

Irreducible characters of the symmetric group as symmetric functions

Rosa Orellana (Dartmouth College) Mike Zabrocki (York University)

$$
S_{n} \subseteq G l_{n}
$$

permutation matrices contained in invertible matrices

Open problem:
irreducible $G l_{n}$ representation V^{λ}
how does V^{λ} decompose into irreducible symmetric group representations?

Answer using characters of $G l_{n}$

$$
\text { character of } V^{\lambda} \text { is } s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right] \simeq A\left[\begin{array}{cccc}
x_{1} & 0 & \cdots & 0 \\
0 & x_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & x_{n}
\end{array}\right] A^{-1}
$$

$$
\begin{aligned}
& \Xi_{r}:=1, \zeta_{r}, \zeta_{r}^{2}, \ldots, \zeta_{r}^{r-1} \quad \zeta_{r}=e^{2 \pi i / r} \\
& \Xi_{\mu}:=\Xi_{\mu_{1}}, \Xi_{\mu_{2}}, \ldots, \Xi_{\mu_{\ell(\mu)}}
\end{aligned}
$$

eigenvalues of a permutation matrix with cycle structure μ

Frobenius image:

$$
\phi_{n}(f)=\sum_{\mu \vdash n} f\left[\Xi_{\mu}\right] \frac{p_{\mu}}{z_{\mu}}
$$

The multiplicity of an S_{n} irreducible M^{γ} in the irreducible $G l_{n}$ module V^{λ}
is equal to the coefficient of s_{γ} in $\phi_{n}\left(s_{\lambda}\right)$

What are the irreducible characters of the symmetric group?
 $$
\tilde{s}_{\lambda}=\phi_{n}^{-1}\left(s_{(n-|\lambda|, \lambda)}\right)
$$

The irreducible characters of the symmetric group form a basis of the symmetric functions.

$$
\tilde{s}_{\lambda}\left(\Xi_{\mu}\right)=\chi^{(|\mu|-|\lambda|, \lambda)}(\mu)
$$

Theorem

The coefficient of \tilde{s}_{λ} in h_{μ}
is the number of column strict tableaux of shape (r, λ) and content μ whose entries are multisets

Intermediate basis- induced trivial characters

$$
\begin{gathered}
\tilde{h}_{\lambda}=\phi_{n}^{-1}\left(h_{(n-|\lambda|, \lambda)}\right) \\
\tilde{h}_{\lambda}\left[\Xi_{\mu}\right]=\left\langle h_{(|\mu|-|\lambda|, \lambda)}, p_{\mu}\right\rangle
\end{gathered}
$$

Combinatorial expansion

$$
h_{\lambda}=\sum_{\pi H\left\{1^{\lambda_{1}}, 2^{\lambda_{2}}, \ldots, \ell^{\lambda} \ell\right\}} \tilde{h}_{\tilde{m}(\pi)} .
$$

$$
h_{31}=\tilde{h}_{1}+3 \tilde{h}_{11}+\tilde{h}_{111}+\tilde{h}_{21}+\tilde{h}_{31}
$$

$\{1112\},\{111 \mid 2\},\{112 \mid 1\},\{11 \mid 12\},\{11|1| 2\},\{12|1| 1\},\{1|1| 1 \mid 2\}$

There exists a Hopf algebra of multi-set partitions...

Contains Hopf algebra of set partitions (NCSym) symmetric functions in non-commuting variables
monomial and power sum bases defined exactly as in NCSym. Commutative image of monomial is induced trivial character, power is complete basis
product and coproduct give interesting combinatorial interpretation to the Kronecker product of complete symmetric functions

Structure coefficients are Kronecker

$$
\begin{aligned}
& \text { For } \lambda, \mu \vdash n \text { where } n \text { is sufficiently large } \\
& \qquad \tilde{s}_{\bar{\lambda}} \tilde{s}_{\bar{\mu}}=\sum_{\nu \vdash n} k_{\lambda \mu \nu} \tilde{s}_{\bar{\nu}}
\end{aligned}
$$

where the $k_{\lambda \mu \nu}$ are the coefficients in the Kronecker product

$$
s_{\lambda} * s_{\mu}=\sum_{\nu \vdash n} k_{\lambda \mu \nu} s_{\nu}
$$

Sales pitch

Positive structure coefficients (reduced Kronecker)
Positive coproduct structure coefficients
Combinatorial tools for working with symmetric group and partition algebra characters

Orthonormal basis with respect to character scalar product

$$
\langle f, g\rangle_{@}=\sum_{\mu \vdash n} \frac{f\left[\Xi_{\mu}\right] g\left[\Xi_{\mu}\right]}{z_{\mu}}=\left\langle\phi_{n}(f), \phi_{n}(g)\right\rangle
$$

- $\left\{\tilde{s}_{\lambda}\right\}_{\lambda}$ is an orthonormal basis with respect to $\langle-,-\rangle_{@}$ $\tilde{s}_{\lambda}=s_{\lambda}+$ terms of lower degree

irreducible character

column strict tableaux $\times \boldsymbol{?} \longleftarrow$ multiset tableaux

Implementation in Sage

```
sage: Sym = SymmetricFunctions(QQ)
sage: st = Sym.irreducible_symmetric_group_character()
sage: st
Symmetric Functions over Rational Field in the irreducible symmetric group character basis
sage: s = Sym.Schur()
sage: s(st[3,2])
3*s[1] - 6*s[1, 1] - 6*s[2] + 3*s[1, 1, 1] + 8*s[2, 1] + 4*s[3] - s[2, 1, 1] - 2*s[2, 2] - 3*s[3, 1]
- s[4] + s[3, 2]
sage: st(s[3,2])
4*st[] + 10*st[1] + 8*st[1, 1] + 11*st[2] + 2*st[1, 1, 1] + 8*st[2, 1] + 6*st[3] + st[2, 1, 1]
+ 2*st[2, 2] + 3*st[3, 1] + st[4] + st[3, 2]
sage: st[2]*st[2,1]
st[1] + 2*st[1, 1] + 2*st[2] + 2*st[1, 1, 1] + 4*st[2, 1] + 2*st[3] + st[1, 1, 1, 1] + 3*st[2, 1, 1]
+ 2*st[2, 2] + 3*st[3, 1] + st[4] + st[2, 2, 1] + st[3, 1, 1] + st[3, 2] + st[4, 1]
sage: s[7,2].kronecker_product(s[6,2,1])
s[8,1] + 2*s[7, 2] + 2*s[7, 1, 1] + 2*s[6, 1, 1, 1] + 4*s[6, 2, 1] + 2*s[6, 3] + s[5, 1, 1, 1, 1]
+3*s[5, 2, 1, 1] + 2*s[5, 2, 2] + 3*s[5, 3, 1] + s[5,4] + s[4, 2, 2, 1] + s[4, 3, 1, 1]
+s[4,3,2] + s[4, 4, 1]
```

