Pieri rules and combinatorics of symmetric group characters

Rosa Orellana and Mike Zabrocki

For each $\lambda + k$ there is a polynom irred representation of Gln of dim m where m= # CST of shape 2 and content {1,2,...,n} Example: $\begin{bmatrix} \mathbf{x}_1 & \mathbf{0} \\ \mathbf{0} & \mathbf{x}_2 \end{bmatrix} \longrightarrow \begin{bmatrix} \mathbf{x}_1^2 \mathbf{x}_2 & \mathbf{0} \\ \mathbf{0} & \mathbf{x}_1 \mathbf{x}_2 \end{bmatrix}$ $\begin{bmatrix} x_{1} & 0 & 0 \\ 0 & X_{2} & 0 \\ 0 & 0 & X_{3} \end{bmatrix} \longrightarrow \begin{bmatrix} x_{1}^{2} X_{a} \\ & x_{1}^{2} X_{3} \\ & x_{2}^{2} X_{3} \\ & x_{2}^{2} X_{3} \\ & x_{2}^{2} X_{3} \\ & x_{2}^{2} X_{3} \end{bmatrix}$

For each $\lambda + k$ there is a polynom irred representation of Gln of dim m where m=#CST of shape 2 and content {1,2,...,n} Example: $\xrightarrow{} \begin{array}{c} X_1^* X_2 & U \\ 0 & X_1 X_2^2 \end{array}$ $s_{21}(x_1, x_2) = x_1^2 x_2 + x_1 x_2^2$ $\begin{array}{c} X_{1}X_{2}^{2} \\ X_{1}X_{2}X_{3} \\ X_{1}X_{2}X_{3} \\ X_{1}X_{2}X_{3} \\ X_{1}X_{3}^{2} \\ X_{2}X_{3} \\ X_{3}^{2} \end{array}$ $\begin{bmatrix} X_1 & 0 & 0 \\ 0 & X_2 & 0 \\ 0 & 0 & X_3 \end{bmatrix} \longrightarrow$

 $s_{21}(x_1, x_2, x_3) = x_1^2 x_2 + x_1^2 x_3 + x_1 x_2^2 + 2x_1 x_2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2$

Gln

 $S_{\lambda}(x_1, x_2, \dots, x_n)$

Gln J On $O_{\chi}(X_1, X_2, \dots, X_n)$ $S_{\lambda}(X_1, X_2, \dots, X_n)$

 $\supset S_n$ $Gl_n \supset O_n$ $O_{\chi}(X_1, X_2, ..., X_n)$ $\tilde{S}_{\lambda}(x_1, x_2, \dots, x_n)$ $S_{\lambda}(X_1, X_2, \dots, X_n)$

$$\sigma$$
 a permutation matrix nxn
cycle type $\sigma = \mathcal{M}$ eigenvals $\Xi_{\mathcal{M}}$

$$\widetilde{S}_{\lambda}(\Xi_{\mu}) = \chi^{(n-|\lambda|,\lambda)}(\mathcal{M})$$

Example

$$\widetilde{S}_{i}(x_{1}, x_{2}, X_{3}) = X_{i} + X_{2} + X_{3} - 1$$
group element
$$\begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ eigenvalues & 1, 1, 1 & 1, -1, 1 & 1, S, S^{2}$$

$$\widetilde{S}_{i}(x_{1}, x_{2}, X_{3}) = Q \quad Q \quad -1$$

character table for S_3

$$\begin{array}{c|ccccc} C_1 & C_2 & C_3 \\ \zeta^{(1)} & 1 & 1 & 1 \\ \zeta^{(2)} & 1 & -1 & 1 \\ \zeta^{(3)} & 2 & 0 & -1 \end{array}$$

 $Gl_n \supset O_n \supset S_n$ $O_{\chi}(X_1, X_2, ..., X_n)$ $\tilde{S}_{\lambda}(x_1, x_2, \dots, x_n)$ $S_{\lambda}(X_1, X_2, \dots, X_n)$

 $\supset S_n$ $Gl_n \supset O_n$ $O_{\chi}(X_1, X_2, ..., X_n)$ $S_{\lambda}(X_1, X_2, \dots, X_n)$ $\tilde{S}_{\lambda}(x_1, x_2, \dots, x_n)$

10 #	of m	vlti-set	tableau;	K
M Zn of	shape	(r,>)/(_{2,})	content	м

24	34	4		$u = (12 \ 0 \ 7 \ 5)$
234	3	34		$\mu = (12, 9, 1, 0)$
13	13	22	23	$\lambda = (4, 4, 3, 3)$
1	112	12	12	
				11 111 a

 $\supset S_n$ $\sum ()_{n}$ (Iln $O_{\lambda}(X_1, X_2, ..., X_n)$ $\tilde{S}_{\lambda}(x_1, x_2, \dots, x_n)$ $S_{\lambda}(X_1, X_2, \dots, X_n)$

 $h_{\mathcal{M}} = \sum_{\lambda} K_{\lambda \mathcal{M}} s_{\lambda}$ $h_{\mathcal{M}} = \frac{2}{2.8\nu} K_{\lambda \mathcal{M}} c_{as,\nu}^{\lambda} o_{\nu}$ $h_{M} = \sum_{\lambda} M_{\lambda m} \tilde{s}_{\lambda}$

structure coefficients

$$\tilde{S}_{\lambda}\tilde{S}_{\mu} = \sum_{\nu} \bar{g}_{\lambda\mu\nu}\tilde{S}_{\nu}$$

reduced Kronecker coefficients of Schur functions

$$S_{(n-1\lambda),\lambda} * S_{(n-1\mu),\mu} = \sum_{\nu} \overline{g}_{\lambda\nu} S_{(n-1\nu),\nu}$$

- 1. cells are labelled $\{\!\{j\}\!\} \{\!\{b^i\}\!\}$ or $\{\!\{j, b^i\}\!\}$
- 2. column strict + cells labelled with $\{j\}$ stay in their place
- 3. there is a 'lattice' condition

19	1999	1999		$h_{(22)} ilde{s}_{(7,4)}$ coeff) ficient	$\widetilde{s}_{(4,4,3)}$
Q	299	299	999			
1	1	19	99			
				19	29	1999

19	1999	1999		$h_{(22)} \widetilde{s}_{(7,4)}$ coeff) ficient	$\widetilde{s}_{(4,4,3)}$
Q	299	299	999			
1	1	19	99			
				19	29	1999

19	1999	1999		$h_{(22)} ilde{s}_{(7,4)}$ coeff) Ficient	$\widetilde{s}_{(4,4,3)}$
Q	299	299	999			
1	1	19	99			
				19	29	1999

1112 211

19	1999	1999		$h_{(22)} \widetilde{s}_{(7,4)}$ coeff) icient	$\widetilde{s}_{(4,4,3)}$
2	299	299	999			
1	1	19	99			
				19	29	1999

22 1112 211

19	1999	1999		$h_{(22)} ilde{s}_{(7,4)}$ coeff) icient	$\widetilde{s}_{(4,4,3)}$
Q	299	299	999			
1	1	19	99			
				19	29	1999

111 22 1112 211

19	1999	1999		$h_{(22)} ilde{s}_{(7,4)}$ coeff) ficient	$\widetilde{s}_{(4,4,3)}$
Q	299	299	999			
1	1	19	99			
				19	29	1999

111 22 1112 211

Thank you!

Frobenius map

$$\phi_n(f) = \frac{1}{n!} \sum_{\sigma \in S_n} f(e_{igenvalues(\sigma)}) p_{\lambda(\sigma)}$$

Image of irreducible character basis

$$\phi_{n}(\tilde{S}_{\lambda}) = S_{(n-|\lambda|,\lambda)}$$

Scalar product

$$\left\langle f, g \right\rangle := \left\langle \phi_n(f), \phi_n(g) \right\rangle$$

$$\left\langle \tilde{S}_{\lambda}, \tilde{S}_{\lambda} \right\rangle = \begin{cases} 1 & \text{if } \lambda = \mu \\ 0 & \text{else} \end{cases}$$

