Pieri rules and combinatorics of symmetric group characters

Rosa Orellana and Mike Zabrocki

For each $\lambda r k$ there is a polynom irred representation of $G l_{n}$ of dim m where $m=\#$ CST of shape λ and content $\left\{1, a_{1}, \ldots, n\right\}$

$$
\lambda=(2,1)
$$

Example:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \longrightarrow\left[\begin{array}{l}
a^{2} d-a c b \\
b^{2} c-a b d \\
b c^{2}-a c d \\
a d^{2}-a b c \\
v_{2}=x_{1} x_{1} x_{2}-x_{1} x_{2} x_{1} \\
111 \\
v_{1}=1 x_{2} x_{2} x_{1}-x_{2} x_{1} x_{2} \\
112]
\end{array}\right]
$$

For each $\lambda r k$ there is a polynom irred representation of $G l_{n}$ of dim m where $m=\#$ CST of shape λ and content $\left\{1, a_{1}, \ldots, n\right\}$

$$
\lambda=(2,1)
$$

Example:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] } \longrightarrow\left[\begin{array}{cc}
a^{2} d-a c b & b^{2} c-a b d \\
b c^{2}-a c d & a d^{2}-a b c
\end{array}\right] \\
& {\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \longrightarrow\left[\begin{array}{l}
\text { some } 8 \times 8 \\
\text { matrix }
\end{array}\right] }
\end{aligned}
$$

For each $\lambda+k$ there is a polynom irred representation of $G l_{n}$ of dim m where $m=\#$ CST of shape λ and content $\left\{1, a_{1}, \ldots, n\right\}$

Example:

$$
\begin{aligned}
& {\left[\begin{array}{cc}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right] \longrightarrow\left[\begin{array}{cc}
x_{1}^{2} x_{2} & 0 \\
0 & x_{1} x_{2}^{2}
\end{array}\right]}
\end{aligned}
$$

For each $\lambda r k$ there is a polynom irred representation of $G l_{n}$ of dim m where $m=\#$ CST of shape λ and content $\{1,2, \ldots, n\}$

Example:

$$
\begin{aligned}
& {\left[\begin{array}{cc}
x_{1} & 0 \\
0 & x_{2}
\end{array}\right] \longrightarrow\left[\begin{array}{cc}
x_{1}^{2} x_{2} & 0 \\
0 & x_{1} x_{2}^{2}
\end{array}\right]} \\
& s_{21}\left(x_{1}, x_{2}\right)=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}
\end{aligned}
$$

$s_{21}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+2 x_{1} x_{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}$

$$
\begin{gathered}
G \ell_{n} \\
s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{gathered}
$$

$$
\underset{s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{G l_{n}} \xrightarrow[o_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)]{ }
$$

$$
G_{n} \rightarrow O_{n} \supset S_{n}
$$

σ a permutation matrix $n \times n$ cycle type $\sigma=\mu$ eigenvals Ξ_{μ}

$$
\tilde{S}_{\lambda}\left(\Xi_{\mu}\right)=\chi^{(n-|\lambda| \lambda)}(\mu)
$$

Example

$$
\begin{aligned}
& \tilde{S}_{1}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}+x_{2}+x_{3}-1 \\
& \text { group element }\left[\begin{array}{lll}
1 & & \\
& 1 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 1 \\
1 & 0 & \\
& & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \\
& \text { eigenvalues } \quad 1,1,1 \quad 1,-1,1 \quad 1, \jmath, \jmath^{2} \\
& \tilde{s}_{1}\left(x_{1}, x_{2}, x_{3}\right) \quad 2 \quad 0 \quad-1
\end{aligned}
$$

character table for S_{3}

	C_{1}	C_{2}	C_{3}
	1	1	1
$\zeta^{(2)}$	1	-1	1
$\zeta^{(3)}$	2	0	-1

$$
G_{n} \rightarrow O_{n} \supset S_{n}
$$

$$
\begin{aligned}
& G l_{n} \supset O_{n} \supset S_{n} \\
& S_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \quad O_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \quad \tilde{S}_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& h_{\mu}=\sum_{\lambda} M_{M \mu} \tilde{s}_{\lambda}
\end{aligned}
$$

$G l_{n}$

$$
S_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \quad O_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \quad \tilde{S}_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

$$
h_{\mu}=\sum_{\lambda} K_{\lambda \mu} s_{\lambda}
$$

$h_{\mu}=\sum_{\lambda_{1}, \gamma, \nu} K_{\lambda \mu} c_{\alpha_{\alpha, v}}^{\lambda} o_{\nu}$

$$
h_{\mu}=\sum_{\lambda} M_{\lambda \mu} \tilde{s}_{\lambda}
$$

structure coefficients

$$
\tilde{S}_{\lambda} \tilde{S}_{\mu}=\sum_{v} \bar{g}_{\lambda \mu v} \tilde{S}_{v}
$$

reduced Kronecker coefficients of Schur functions

$$
S_{(n-|\lambda|, \lambda)} * S_{(n-|\mu|, \mu)}=\sum_{v} \bar{g}_{\lambda \mu v} S_{(n-\mid v, v)}
$$

Pieri rule

1. cells are labelled $\{j\}\}\left\{b^{i}\right\}$ or $\left\{j, b^{i}\right\}$
2. column strict + cells labelled with $\{j\}$ stay in their place
3. there is a 'lattice' condition

221112211

111221112211

111221112211

Thank you!

Frobenius map

$$
\phi_{n}(f)=\frac{1}{n!} \sum_{\sigma \in S_{n}} f(\text { eigenvalues }(\sigma)) p_{\lambda(\sigma)}
$$

Image of irreducible character basis

$$
\phi_{n}\left(\tilde{S}_{\lambda}\right)=S_{(n-|\lambda|, \lambda)}
$$

Scalar product

$$
\begin{aligned}
& \langle f, g\rangle_{\|}=\left\langle\phi_{n}(f), \phi_{n}(g)\right\rangle \\
& \left\langle\tilde{s}_{\lambda}, \tilde{s}_{M}\right)_{\theta}=\left\{\begin{array}{l}
1 ; i f \\
0 \\
0
\end{array}\right. \text { else }
\end{aligned}
$$

structure coefficients again

structure coefficients again

structure coefficients again

structure coefficients again

structure coefficients again

structure coefficients again

