Combinatorics of characters of symmetric group as symmetric functions

Mike Zabrocki
York University (Canada)

joint work with Rosa Orellana

The ring of symmetric functions' dual role in representation theory

$S y m_{X_{n}}$ is the ring of characters of $G l_{n}(\mathbb{C})$

$$
s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Sym is isomorphic to the ring of characters of $\bigoplus_{k \geq 0} S_{k}$

$$
\mathcal{F}_{S_{k}}\left(\chi^{\lambda}\right)=s_{\lambda}
$$

$$
k \geq 0
$$

λ partition of k and χ^{λ} is an irreducible S_{k} character

The ring of symmetric functions' dual role in representation theory

$\operatorname{Sym}_{X_{n}}$ is the ring of characters of $G l_{n}(\mathbb{C})$

$$
s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

UI
Sym $_{X_{n}}$ is the ring of characters of S_{n}

$$
\tilde{s}_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Sym is isomorphic to the ring of characters of $\bigoplus_{k \geq 0} S_{k}$

$$
\mathcal{F}_{S_{k}}\left(\chi^{\lambda}\right)=s_{\lambda}
$$

λ partition of k and χ^{λ} is an irreducible S_{k} character

The ring of symmetric functions' dual role in representation theory

$\operatorname{Sym}_{X_{n}}$ is the ring of characters of $G l_{n}(\mathbb{C})$

$$
s_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

UI
Sym $_{X_{n}}$ is the ring of characters of S_{n}

$$
\tilde{s}_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

$\tilde{s}_{\lambda}[$ eigenvals of permutation matrix $\mu]=\chi^{(n-|\lambda|, \lambda)}(\mu)$

$$
\tilde{s}_{\lambda} \tilde{s}_{\nu}=\sum_{\gamma} \bar{k}_{\lambda \nu \gamma} \tilde{s}_{\gamma}
$$

Theorem

The coefficient of \tilde{s}_{λ} in h_{μ}
is the number of column strict tableaux of shape (r, λ) and content μ whose entries are multi-sets

Discovered and rediscovered...

Littlewood 1958

The characters of the symmetric group can be obtained from those of the full linear group in a similar manner to that used for the orthogonal group, namely by considering a tensor corresponding to any partition (λ) of any integer n, and removing all possible contractions with the fundamental forms (2, p. 392). The remainder when all contractions are removed is an irreducible character, provided that $n-p \geqslant \lambda_{1}$, and it is not difficult to see that it is in fact the character of the symmetric group corresponding to the partition $\left(n-p, \lambda_{1}, \ldots, \lambda_{i}\right)$. It is convenient to represent by [λ] not this character, but the corresponding S-function

$$
[\lambda]=\left\{n-p, \lambda_{1}, \ldots, \lambda_{i}\right\}
$$

$$
\begin{gathered}
{[21] \cdot[21]=[42]+\left[41^{2}\right]+\left[3^{2}\right]+2[321]+\left[2^{3}\right]+\left[31^{3}\right]} \\
+\left[2^{2} 1^{2}\right]+[5]+4[41]+5[32]+6\left[31^{2}\right]+5\left[2^{2} 1\right]+4\left[21^{3}\right]+\left[1^{5}\right] \\
+3[4]+9[31]+6\left[2^{2}\right]+9\left[21^{2}\right]+3\left[1^{4}\right]+5[3]+9[21]+5\left[1^{3}\right]+4[2] \\
+4\left[1^{2}\right]+2[1]+[0] .
\end{gathered}
$$

Speyer 2010

Reference request: The stable Kronecker ring is isomorphic to the ring of symmetric polynomials

Background

10 For λ any partition and n a positive integer, write $\lambda[n]$ for the sequence $\left(n-|\lambda|, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}\right.$)

The irreducible representations of S_{n} are indexed by partitions of n; we denote them by S_{λ}. The
$\stackrel{\rightharpoonup}{\omega}$

$$
S_{\lambda} \otimes S_{\mu} \cong \bigoplus g_{i \mu}^{\nu} S_{\nu}
$$

featured on meta
\square Control the types of email you receive via our new Emal Setings feature

133 People Chatting

Question
I can prove that the stable Kronecker ring is isomorphic to the ring of symmetric functions. Is this fact already in the literature?
co.combinatorics \mid reference-request \mid symmetric-group

Butler, King 1973

The symmetric groups are thus treated quite differently from the linear and other continuous groups: the orthogonal, rotation, and symplectic groups. The characters of these groups are known ${ }^{8}$ in terms of S functions and the usual method of calculating such things as Kronecker products of the representations of these groups is to use S-functional expressions for their characters and the powerful algebra of S functions associated with the n-independent outer product rule. The labels that arise from this approach are the same as those that arise from tensorial arguments. ${ }^{7,9}$ The aim of this paper is to show that the symmetric groups, Σ_{n}, may be treated in an n-independent manner similar to that used for the restricted groups O_{n} and $S p_{n}$, rather than in the usual n-dependent manner requiring a development of the somewhat complicated algebra of inner products of S functions. ${ }^{10}$

Some specific examples of (3.4) are of interest, namely:

$$
\begin{equation*}
L_{n-1} \rightarrow \Sigma_{n}\{1\} \rightarrow\langle 1\rangle \tag{3.6a}
\end{equation*}
$$

$$
\begin{align*}
& \{2\} \rightarrow\langle 2\rangle+\langle 1\rangle+\langle 0\rangle \tag{3.6b}\\
& \left\{1^{2}\right\} \rightarrow\left\langle 1^{2}\right\rangle \tag{3.6c}\\
& \left\{1^{k}\right\} \rightarrow\left\langle 1^{k}\right\rangle \tag{3.6d}\\
& \left\{1^{n-1}\right\} \rightarrow\left\langle 1^{n-1}\right\rangle . \tag{3.6e}
\end{align*}
$$

Why? Applications

Church-Farb representation stability
representation theory of symmetric group and the partition algebra

Kronecker and reduced/stable Kronecker product
restriction/branching from irreducible Gln to Sn
plethysm
Combinatorics of multi-set partitions, multi-set tableaux and Hopf algebras

partition algebra irrep dimensions
oscillating tableaux

3	4	
1	2	5

symmetric group irrep dimensions standard tableaux

2	3	
1	1	3

general linear group irrep dimensions column strict tableaux

Brauer algebra irrep dimensions vascillating tableaux

$$
\begin{aligned}
& \emptyset \rightarrow \square \rightarrow 日 \rightarrow \boxminus \rightarrow \square \square \rightarrow \square \\
& \emptyset \rightarrow \square \rightarrow \boxminus \rightarrow \boxminus \rightarrow \boxminus \rightarrow \square \\
& \emptyset \rightarrow \square \rightarrow \square \rightarrow \square \rightarrow \square \square \rightarrow \square \\
& \emptyset \rightarrow \square \rightarrow \square \rightarrow \square \rightarrow \square \rightarrow \square \\
& \emptyset \rightarrow \square \rightarrow \square \rightarrow \square \square \rightarrow \square \square \rightarrow \square
\end{aligned}
$$

$$
\left.\begin{array}{c}
V=\mathcal{L}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \\
V^{\otimes k} \simeq \bigoplus_{\lambda \vdash k}\left(\begin{array}{c}
\text { irreducible } G l_{n} \\
\text { subspace } \\
\lambda
\end{array}\right)^{\oplus f_{\lambda}} \\
n^{k}=\sum_{\lambda \vdash k}\left(\begin{array}{c}
\text { \# of column } \\
\text { strict tableaux } \\
\text { of shape } \lambda
\end{array}\right)\left(\begin{array}{c}
\text { \# of standard } \\
\text { tableaux of } \\
\text { shape } \lambda
\end{array}\right.
\end{array}\right)
$$

$$
\begin{gathered}
V=\mathcal{L}\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \\
V^{\otimes k} \simeq \bigoplus_{\lambda:|\lambda| \leq k}\left(\begin{array}{c}
\text { irreducible } \\
\text { subspace } \\
S_{n} \\
\text { sus }
\end{array}\right)^{\oplus n_{\lambda}} \\
n^{k}=\sum_{\lambda 1 n}\left(\begin{array}{c}
\text { \# of standard } \\
\text { tableaux shape } \\
\lambda
\end{array}\right)\binom{\text { paths in a Bratteli }}{\text { diagram }} \\
h_{1^{k}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{\lambda:|\lambda| \leq k} n_{\lambda} \tilde{s}_{\lambda}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{gathered}
$$

 $\square \rightarrow \square \rightarrow \square$

$\square \square \rightarrow \square \rightarrow \square \square \rightarrow \square \rightarrow \square \rightarrow \square \rightarrow \square$

$\square \square \rightarrow \square$

2	3		
			1

12	3		

1	3		
			2

$\square \square \rightarrow \square$

1	23		

1	2		
			3

$$
n^{k}=\sum_{\lambda+n}\left(\begin{array}{l}
\text { \# of standard } \\
\text { tableaux shape } \\
\lambda
\end{array}\right)\left(\begin{array}{l}
\# \text { of standard } \\
\text { set tableaux } \\
\text { in } \begin{array}{l}
\{1,2, \ldots, k\} \\
\text { shape of }
\end{array} \\
\begin{array}{l}
\text { she }
\end{array}
\end{array}\right)
$$

Summary
The dimensions of the irreducible partition algebra representations are equal to the number of standard set valued tableaux.

There is a bijection with the (previously known) combinatorial interpretation (oscillating tableaux) and there is an RSK bijection which explains

$$
\left.\begin{array}{c}
n^{k}=\sum_{\lambda+n}\left(\begin{array}{c}
\# \text { of standard } \\
\text { tableaux shape } \\
\lambda
\end{array}\right)\left(\begin{array}{c}
\# \text { of standard } \\
\text { set tableaux } \\
\text { sis } \\
\text { shape }, \ldots, k\}
\end{array}\right. \\
\text { sha of }
\end{array}\right) .
$$

