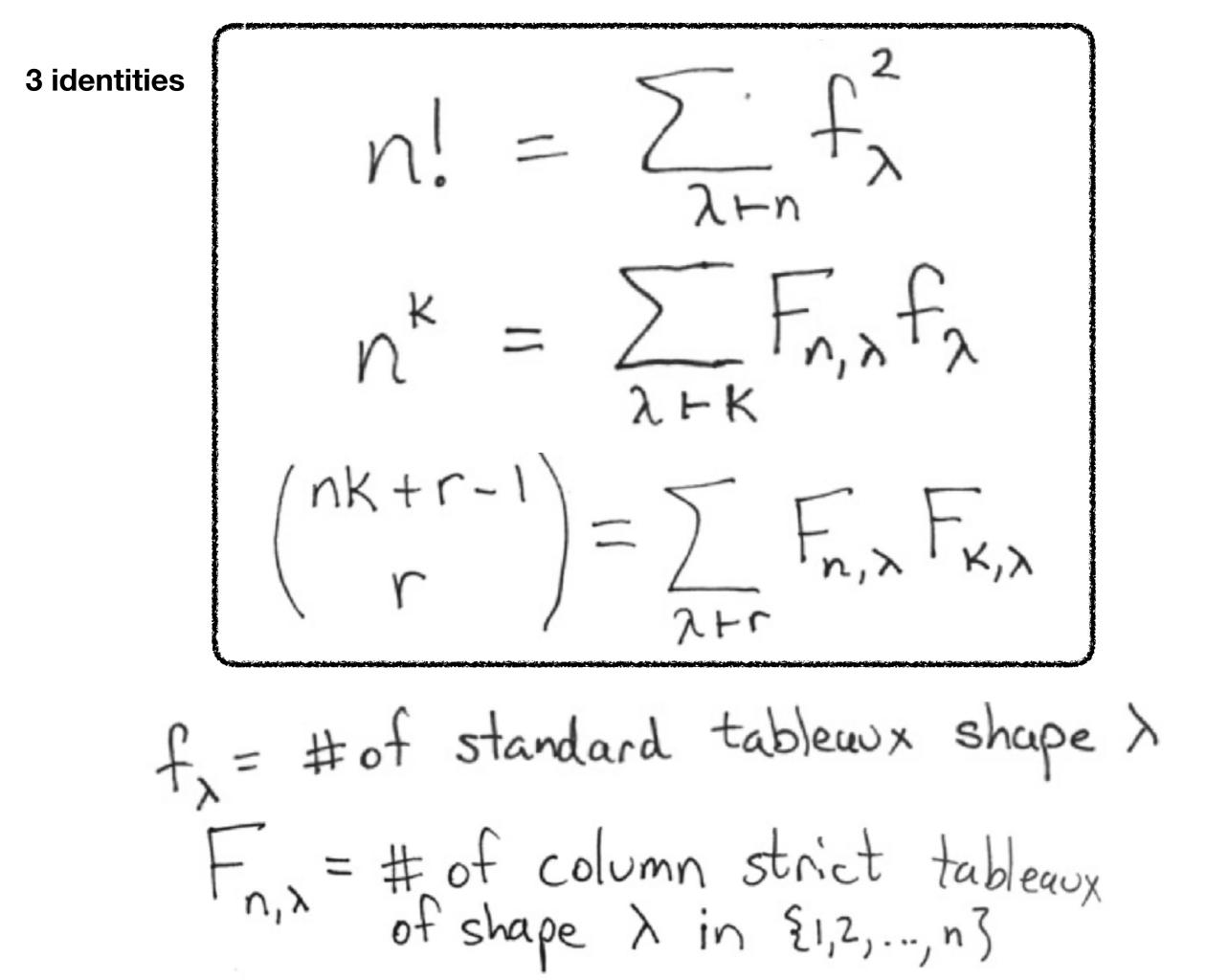
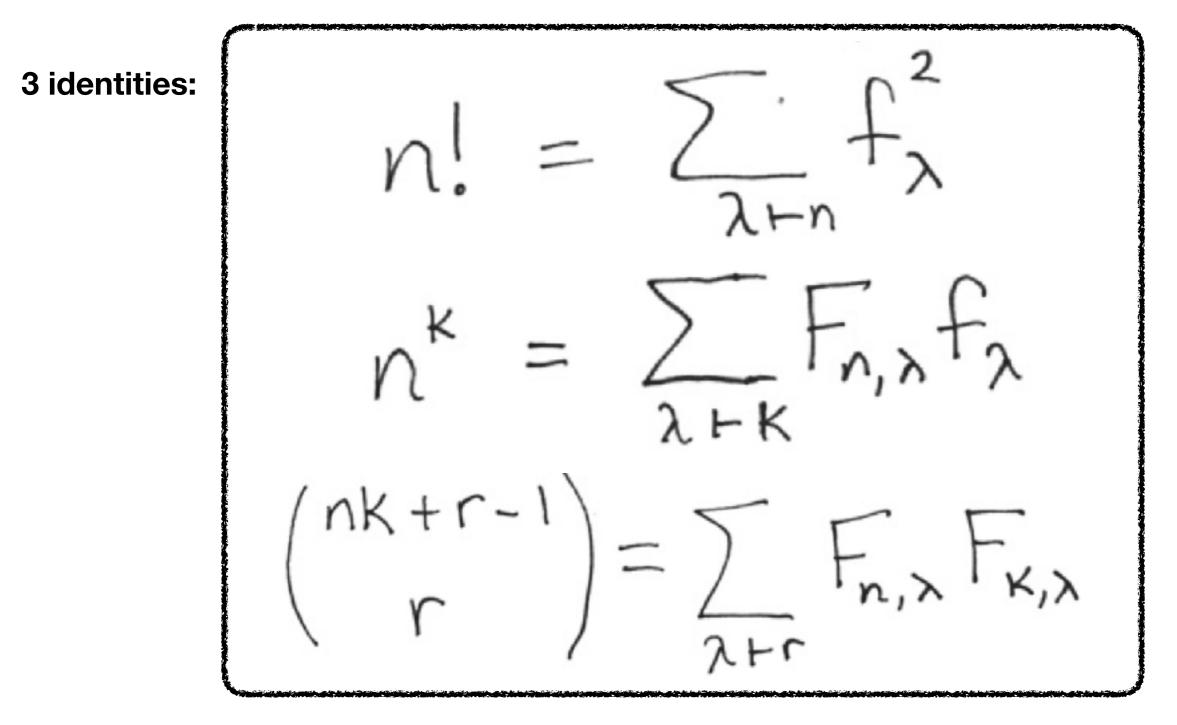
Symmetric Group Representations and Howe Duality

Mike Zabrocki - York University (joint work with Rosa Orellana)

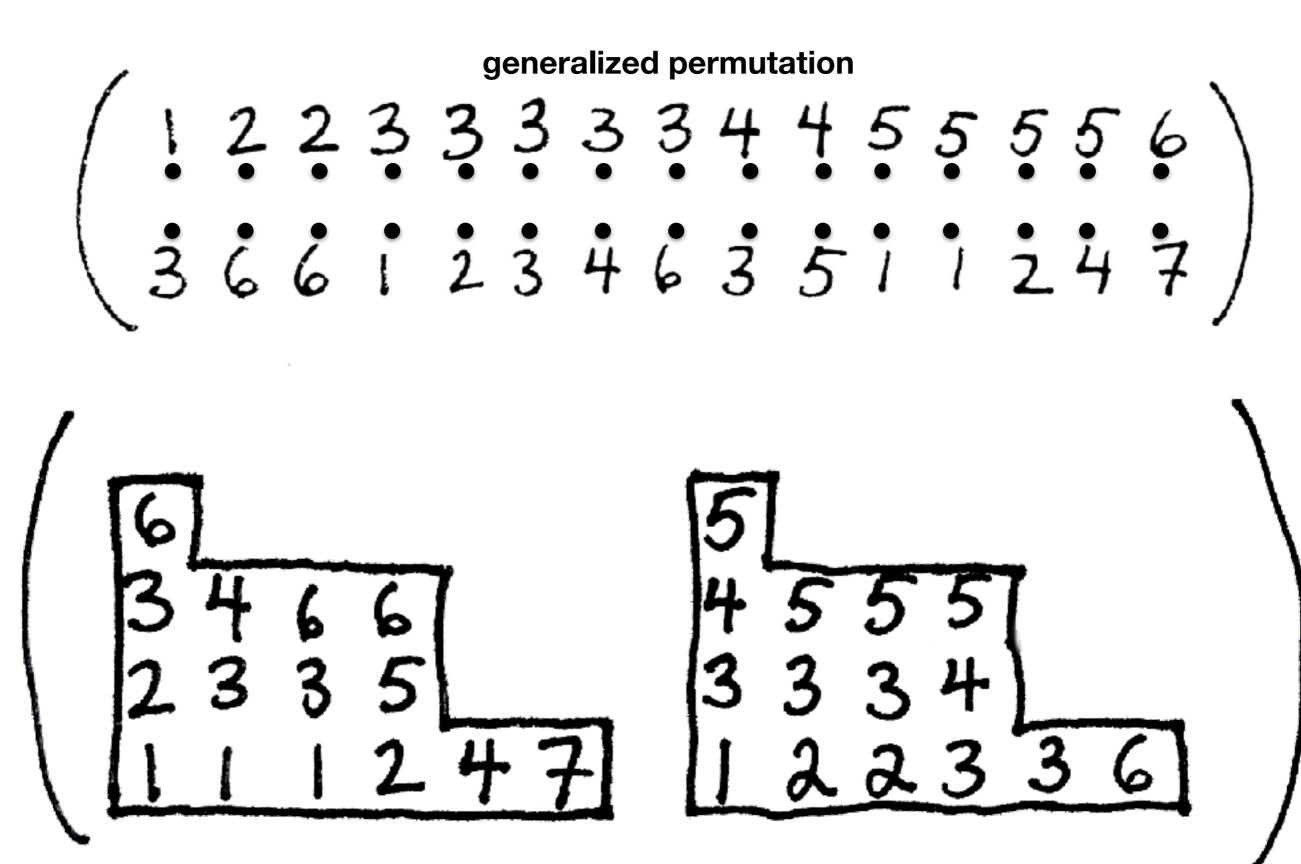




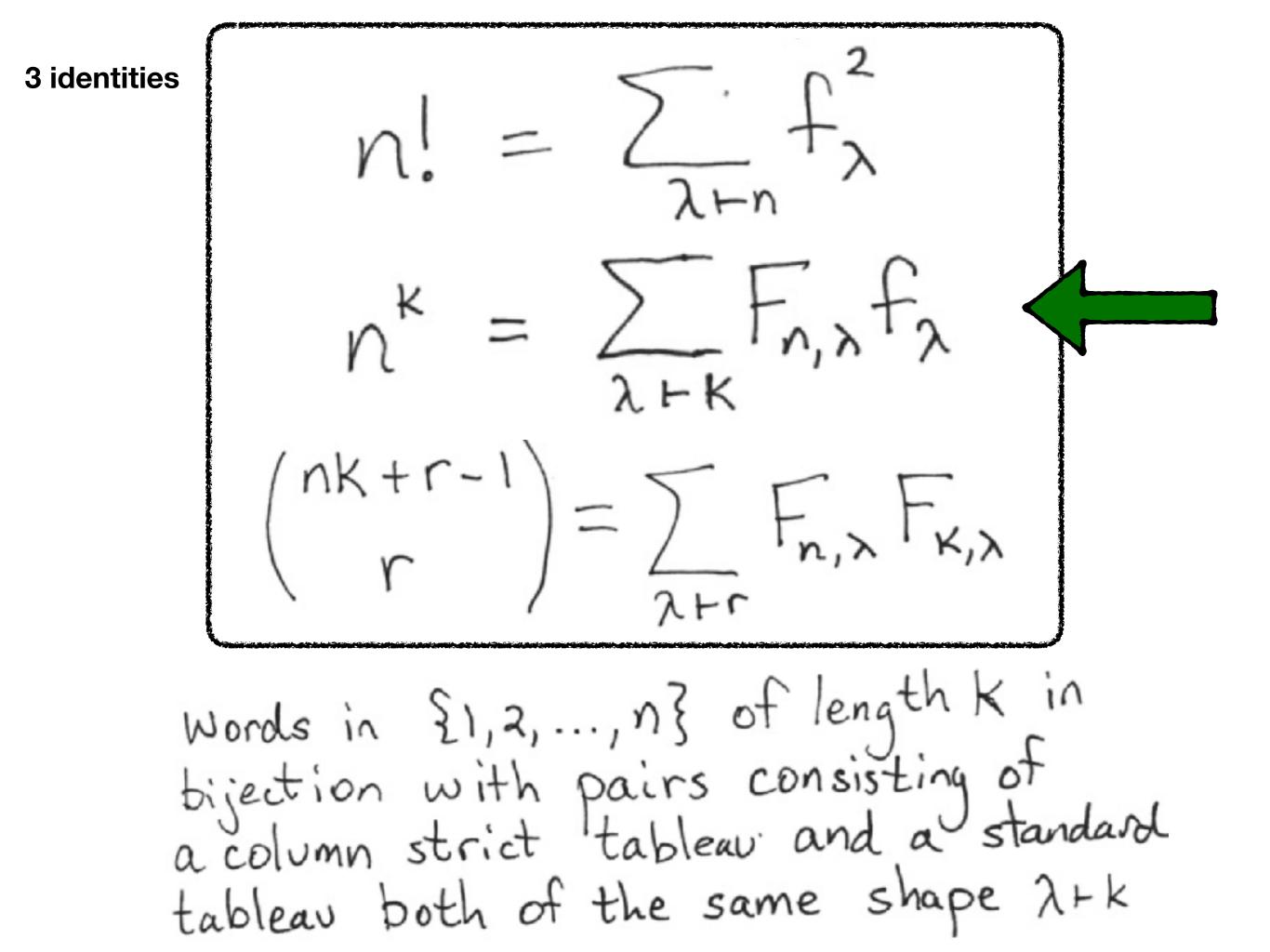
3 proofs:

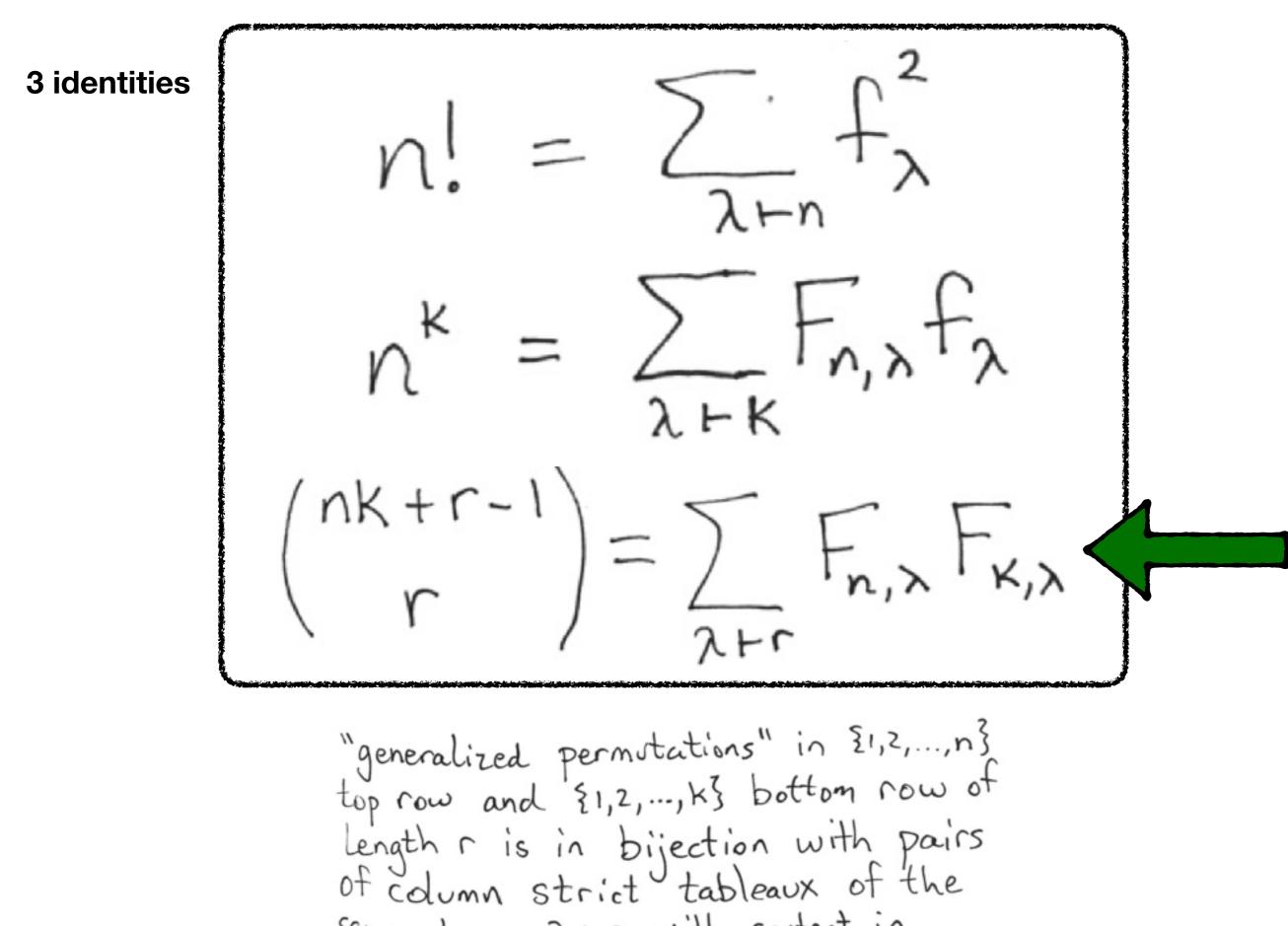
combinatorial - Robinson-Schensted-Knuth symmetric functions - Cauchy kernel coefficient representation theory - Schur-Weyl and Howe duality

Robinson-Schensted-Knuth

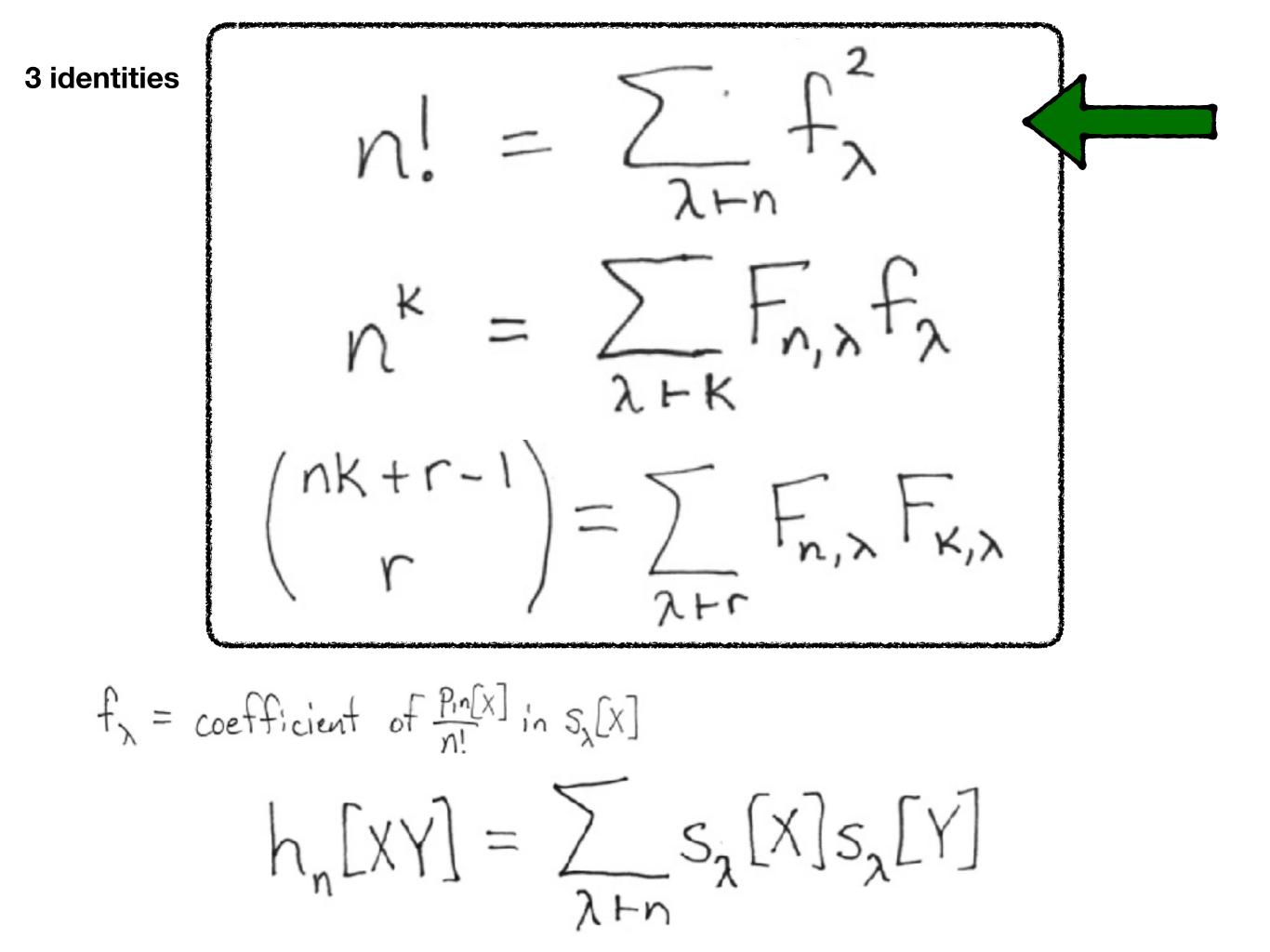


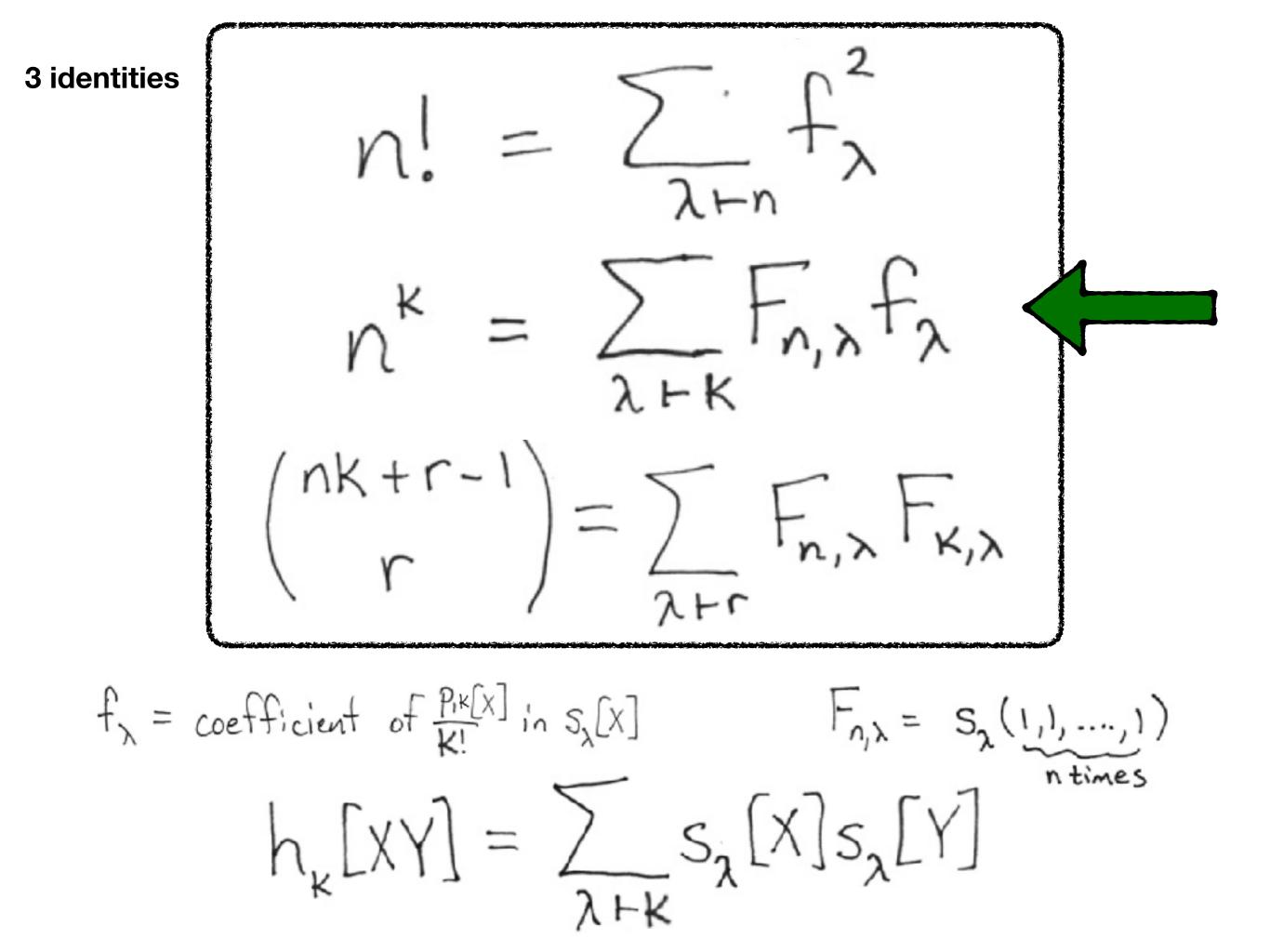
3 identities n! $n^{\kappa} = \sum_{\lambda \in \kappa} F_{n,\lambda} f_{\lambda}$ $\binom{nK+r-1}{F_{n,\lambda}} = \sum F_{n,\lambda} F_{K,\lambda}$ ZHr permutations in bijection with pairs of standard tableaux of same shape.

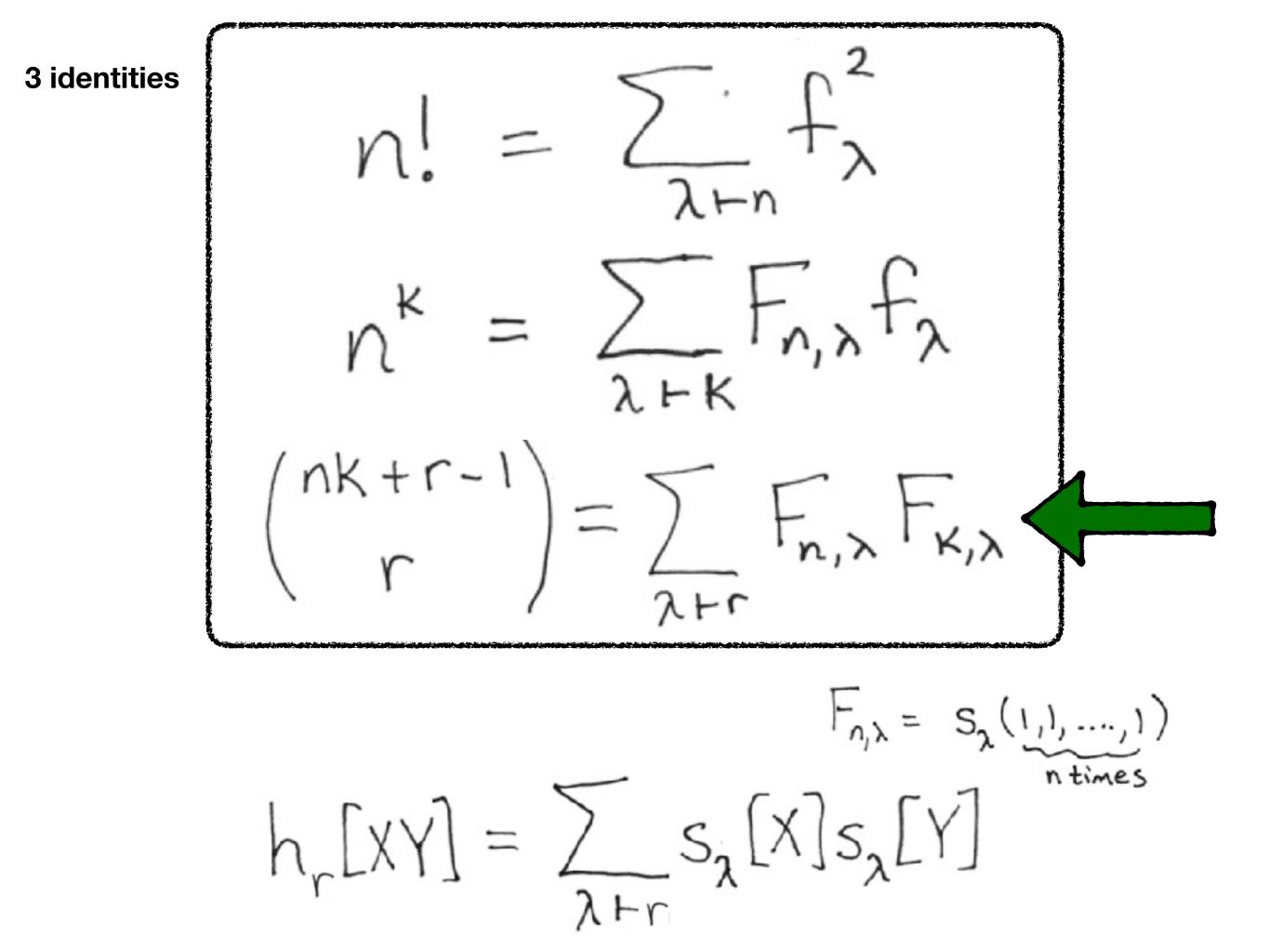


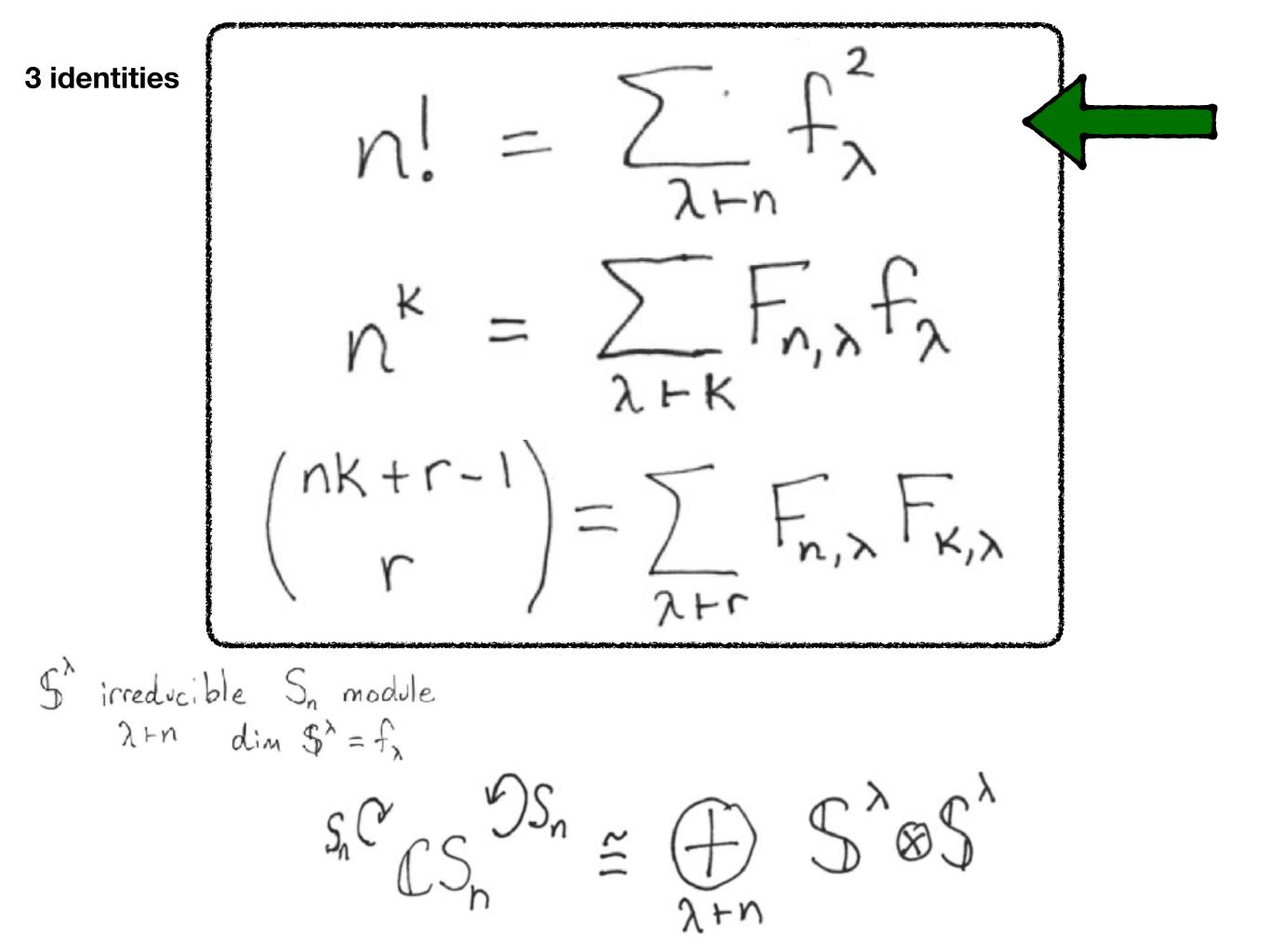


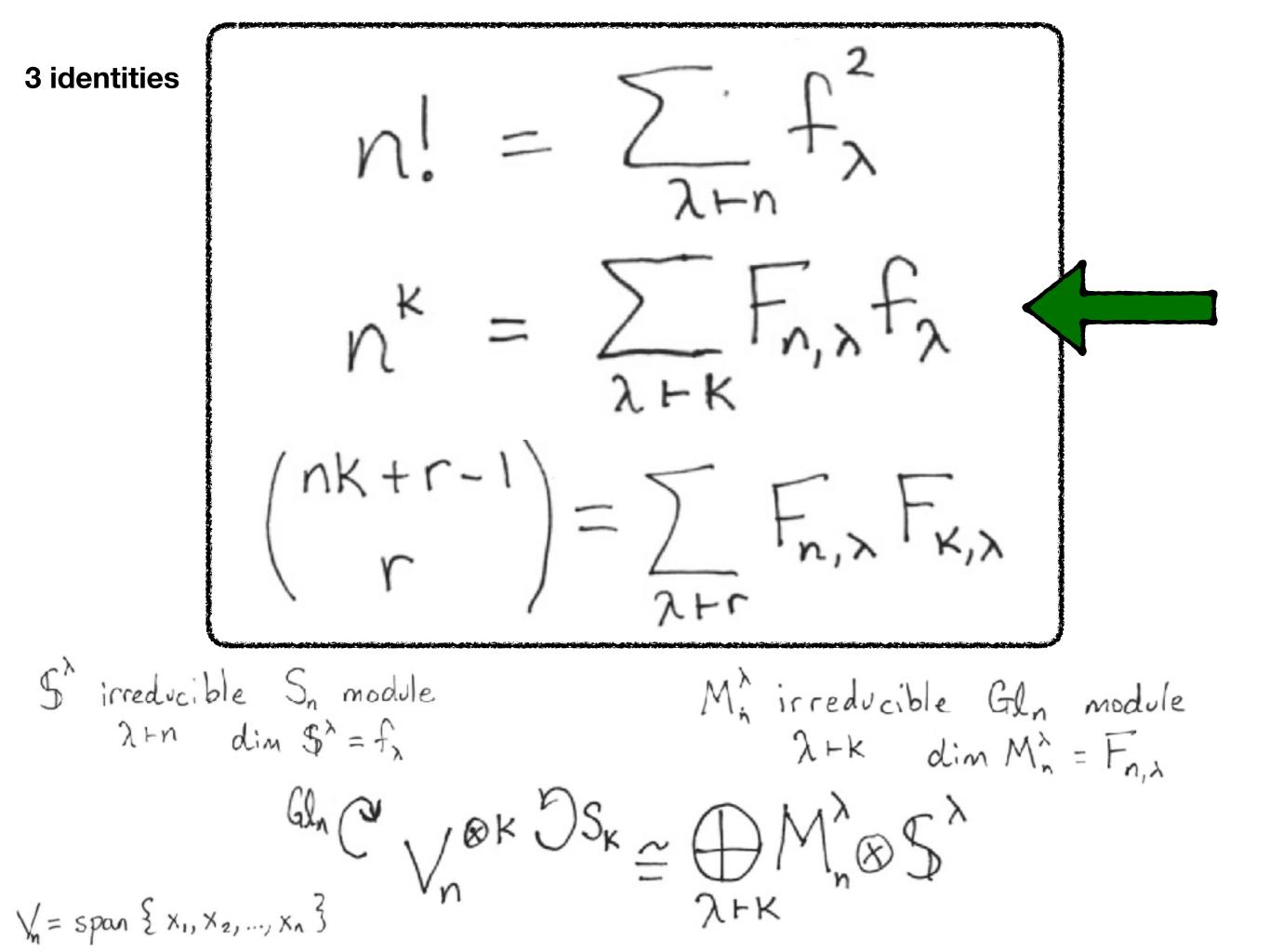
same shape 2+r with content in \$1,2,...,n3 and \$1,2,...,k3 respectively

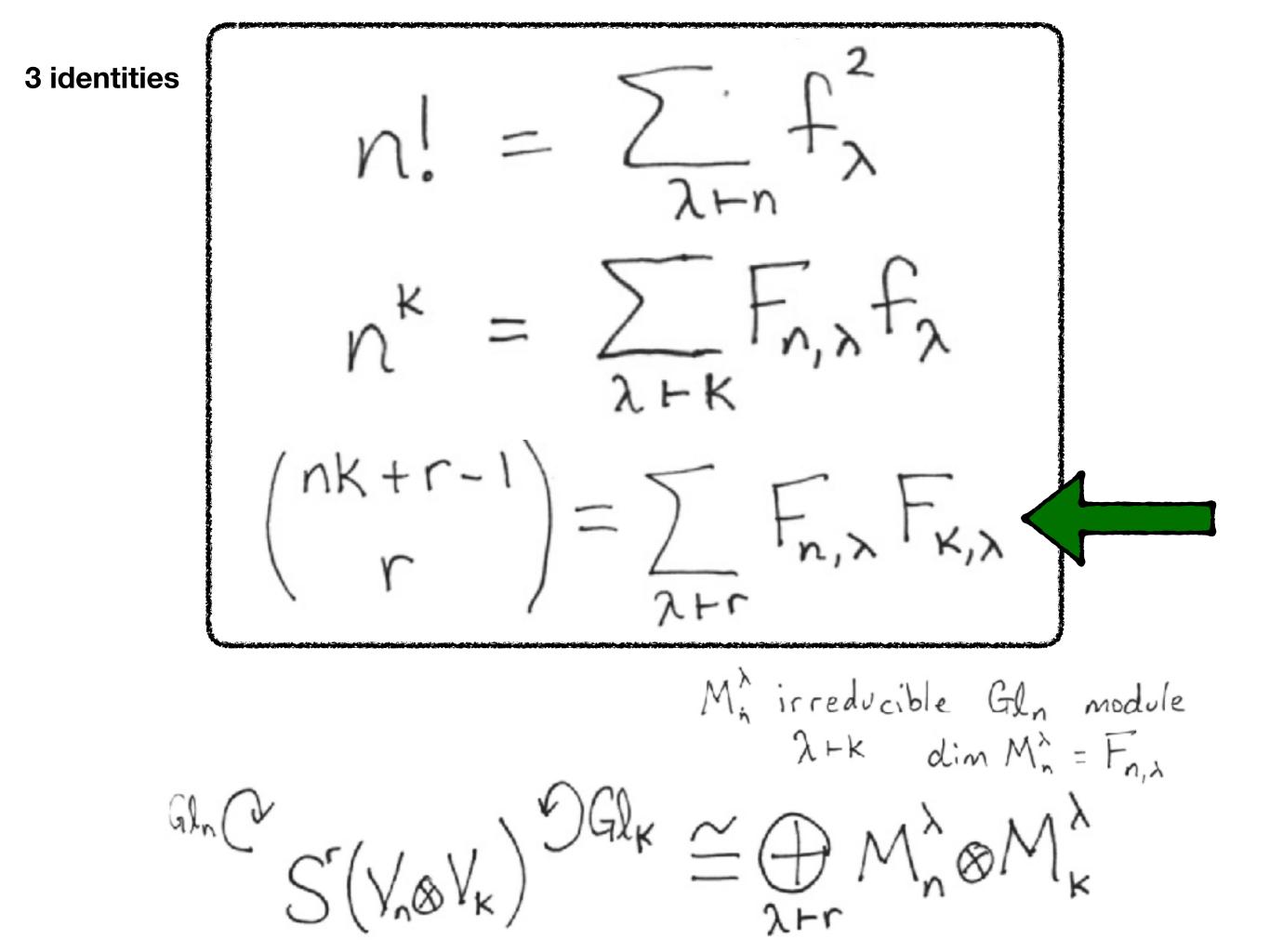












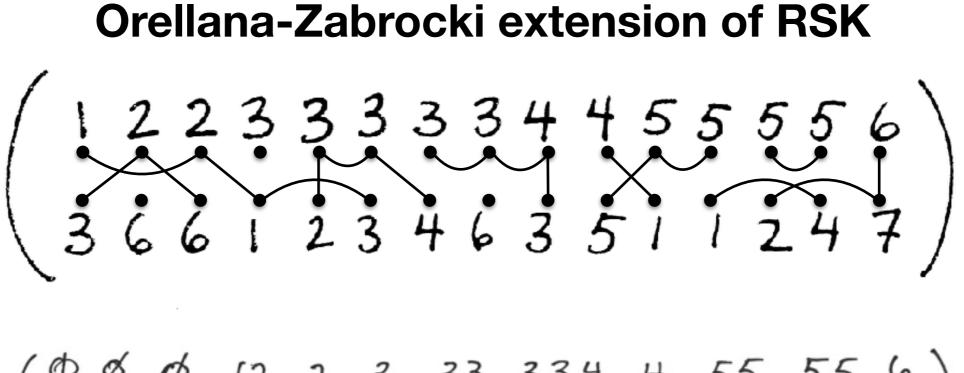
Orellana-Zabrocki

There is an inhomogeneous basis
of the symmetric functions
$$\tilde{S}_{\lambda}$$

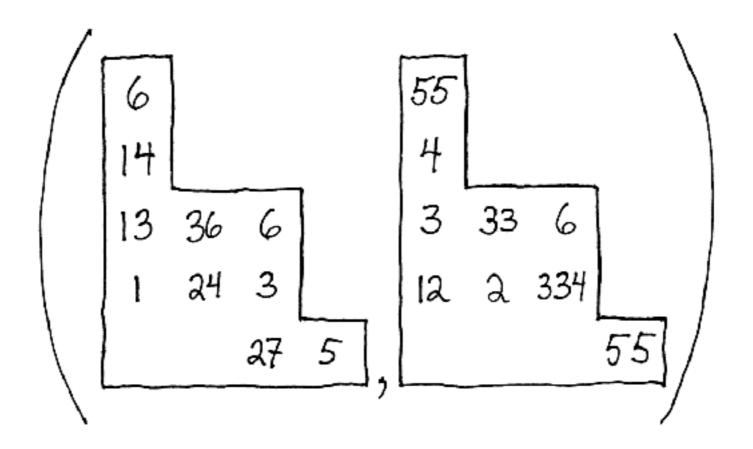
that are the characters of the
permutation matrices $S_n \subseteq Gl_n$
 \tilde{S}_{λ} [eigenvals of $\sigma \in Gl_n$] = $\chi^{(n-1\lambda l,\lambda)}(\sigma)$

Martin/Jones 1990's: The Symmetric group of permutations realized as matrices in Gln acts on V^{®K} and there is an algebra indexed by set partitions of §1,2,...,K,T,Z,...,KZ which commutes with the action of Sn on Vn

partition algebra $l_{1} = 2 = 3 = 4 = 5 = 6 = 7$ $P_{k}(n)$ $I_{2} = 3 = 4 = 5 = 6 = 7$ $T_{2} = 3 = 4 = 5 = 6 = 7$



 $\begin{pmatrix} \phi & \phi & f_1 & 2 & 2 & 3 & 3,3 & 3,3,4 & 4 & 5,5 & 5,5 & 6 \\ 14 & 6 & 6 & 1,3 & 3,6 & \phi & 1,4 & 3 & 1 & \phi & 5 & 2,7 \end{pmatrix}$



Theorem (Orellana-Zabrocki) The commutant algebra of Sn acting on S(Vn &VK) has a basis indexed by multiset partitions of size r and values in E1,2,...,K}.

multiset partition algebra