Categorification, Tower of Algebras and Combinatorial Hopf Algebras.

Nantel Bergeron

www.math.yorku.ca/bergeron

E-Mail: bergeron@yorku.ca

(with C. Benedetti, N. Thiem

M. Aguiar and many more)

Temple Dec 2013

Outline

• What is a Combinatorial Hopf Algebra.

• Sym is a strong CHA.

• Restriction on original definition of strong CHA

• How to make NCSym a strong CHA.

Combinatorial Hopf Algebra

 $H = \bigoplus_{n \geq 0} H_n$ a graded connected Hopf algebra is CHA if

(weak) There is a distinguished basis with positive integral structure coefficients.

(med) it is weak CHA with a distinguish character.

[combinatorial Identity]

(strong) it is med CHA such that the structure is obtained from representation operation

[Combinatorics of structure constants]

(Bonus) It is the functorial image of a Hopf monoid.

[Combinatorial objects]

Sym is a strong CHA

Sym is the space of symmetric functions $\mathbb{Z}[h_1, h_2, \ldots]$, with $\deg(h_k) = k$ and

$$\Delta(h_k) = \sum_{i=0}^k h_i \otimes h_{k-i}.$$

It is a strong CHA:

- Basis: Schur functions s_{λ}
- Representation of symmetric groups and Frobenius map:

$$\mathcal{F} \colon \bigoplus_{n \ge 0} K_0(S_n) \to Sym$$

is an isomorphism of graded Hopf algebra where $\mathcal{F}(M^{\lambda}) = s_{\lambda}$

Hopf structure on $\bigoplus_{n>0} K_0(S_n)$

 $K_0(S) = \bigoplus_{n \geq 0} K_0(S_n)$ is the space of S_n -modules up to isomorphism

- Basis: Irreducible modules M^{λ}
- Structure:

$$M * N = \operatorname{Ind}_{S_n \times S_m}^{S_{n+m}} M \otimes N$$

$$\Delta M = \bigoplus_{k=0}^{n} \operatorname{Res}_{S_k \times S_{n-k}}^{S_n} M$$

• $\mathcal{F}: K_0(S) \to Sym$ is an isomorphism of graded Hopf algebra where $\mathcal{F}(M^{\lambda}) = s_{\lambda}$

Sym is a strong CHA

Original definition of strong CHA

Consider a graded algebra $A = \bigoplus_{n \geq 0} A_n$

- Each A_n is an algebra.
- $\dim A_0=1$ and $\dim A_n<\infty$.
- $\rho_{n,m}: A_n \otimes A_m \hookrightarrow A_{n+m}$; injective algebra homomorphism
- A_{n+m} is projective bilateral submodule of $A_m \otimes A_m$.
- Right and left projective structure of A_{n+m} are compatible.
- There is a Makey formula linking induction and restriction

A is a tower of algebra

Original definition of strong CHA

Consider a tower of algebras $A = \bigoplus_{n>0} A_n$

Let $K_0(A) = \bigoplus_{n\geq 0} K_0(A_n)$ is the space of projective A_n -modules up to isomorphism and modulo short exact sequences

• $K_0(A)$ is a graded Hopf algebra:

$$M*N = \operatorname{Ind}_{A_n \otimes A_m}^{A_{n+m}} M \otimes N$$

$$\Delta M = \bigoplus_{k=0}^{n} \operatorname{Res}_{A_k \otimes A_{n-k}}^{A_n} M$$

• H is a strong CHA if there is an A an isomorphism

$$\mathcal{F}\colon K_0(A)\to H$$

• Sym, QSym, NSym, are strong CHA.

Original definition of strong CHA

Consider a tower of algebras $A = \bigoplus_{n>0} A_n$

Let $K_0(A) = \bigoplus_{n\geq 0} K_0(A_n)$ is the space of projective A_n -modules up to isomorphism and modulo short exact sequences

- $K_0(A)$ is a graded Hopf algebra:
- \bullet H is a strong CHA if there is an A an isomorphism

$$\mathcal{F}\colon K_0(A)\to H$$

THEOREM[B-Lam-Li]

if A is a tower of algebras, then $\dim(A_n) = r^n n!$

this is very restrictive... For example, it seams hopeless to find a tower of algebras for NCSym (symmetric functions in non-commutative variables).

How to make NCSym a strong CHA

NCSym symmetric functions in non-commutative variables.

• Basis monomial m_{λ} basis (sum of orbit of a word) indexed by set partitions

$$m \underbrace{\hspace{1cm} \cdot m}_{1\ 2\ 3} = m \underbrace{\hspace{1cm} + m}_{1\ 2\ 3\ 4\ 5\ 6} + m \underbrace{\hspace{1cm} + m}_{1$$

$$\Delta\left(m_{\overbrace{1\ 2\ 3\ 4}}\right) = m_{\overbrace{1\ 2\ 3\ 4}} \otimes m_{\emptyset} + 2m_{\overbrace{1\ 2\ 3}} \otimes m_{\underbrace{\bullet}} + m_{\underbrace{\bullet}} \otimes m_{\underbrace{\bullet}} + m_{\emptyset} \otimes m_{\underbrace{\bullet}} + m_{\emptyset} \otimes m_{\underbrace{\bullet}} + m_{\emptyset} \otimes m_{\underbrace{\bullet}} + m_{\emptyset} \otimes m_{\underbrace{\bullet}} \otimes m_{\underbrace{$$

Supercharacter theory of $U_n(q)$

lumping conjugacy classes and characters together to get a more tame theory André, Diaconis-Isaac.

- Unipotent upper triangular matrices over finite Fields \mathbf{F}_q : $U_n(q)$.
- Superclasses in $U_n(q)$:

$$A \cong B \quad \leftrightarrow \quad (A - I) = DM(B - I)N$$

superclass representative has at most one 1 in each row and column (strictly above the diagonal).

$$\lambda = \begin{pmatrix} & & & \\ & & & \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{pmatrix}$$

Supercharacter theory of $U_n(q)$

lumping conjugacy classes and characters together to get a more tame theory André, Diaconis-Isaac.

- Unipotent upper triangular matrices over finite Fields \mathbf{F}_q : $U_n(q)$.
- Superclasses in $U_n(q)$ λ
- Supercharacters χ^{λ} Hopf algebra structure see ArXive 28 author paper:

$$\Delta(\chi) = \sum_{A+B=[n]} \operatorname{Res}_{U_{|A|}(q) \times U_{|B|}(q)}^{U_{n}(q)} \chi$$
$$\chi \cdot \psi = \operatorname{Inf}_{U_{n}(q) \times U_{m}(q)}^{U_{n+m}(q)} \chi \otimes \psi = (\chi \otimes \psi) \circ \pi$$

where $\pi: U_{n+m}(q) \to U_n(q) \times U_m(q)$.

Supercharacter theory of $U_n(q)$

• Superclass functions κ_{λ} basis Hopf algebra structure is nice:

$$\kappa_{1\ 2\ 3} \cdot \kappa_{1\ 2\ 3} = \kappa_{1\ 2\ 3\ 4\ 5\ 6} + \kappa_{1\ 2\ 3\ 4\ 5\ 6}$$

$$\Delta\left(\kappa_{\underbrace{1\ 2\ 3\ 4}}\right) = \kappa_{\underbrace{1\ 2\ 3\ 4}} \otimes \kappa_{\emptyset} + 2\kappa_{\underbrace{0\ 1\ 2\ 3}} \otimes \kappa_{\underbrace{0\ 1\ 2\ 3}} + \kappa_{\underbrace{0\ 0\ 0\ 1\ 2}} \otimes \kappa_{\underbrace{0\ 1\ 2\ 3}} + \kappa_{\emptyset} \otimes \kappa_{\underbrace{0\ 1\ 2\ 3\ 4}} + \kappa_{\emptyset} \otimes \kappa_{\underbrace{0\ 1\ 2\ 3\ 4}}.$$

Isomorphism

- the Hopf algebra of symmetric functions in noncommutative variables is isomorphic to the Hopf algebra of superclass functions.
- Where is q? [see nice paper by Bergeron-Thiem in Int. J. of Algebra and Comp. 23 (4), 763-778]

• • •

Conclusions

What is the right definition of strong CHA?

- (A) Tower of algebra A (not nesc. same xioms)
- (B) K-theory of super-module theory
- (C) Harish-Chandra Induction/restriction as operation:

 $\operatorname{Ind} \circ \operatorname{Inf}$

 $Def \circ Res$

Here we try to maximize Inf and Def (in the case of symmetric group, there is no possible Inf, for U_n , it is all Inf)

 Gl_n is an example where we see a combination

Thank You!