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Wilf Equivalence for Permutations

Given a sequence of distinct numbers s = s1 · · · sn, we let red(s)

denote the permutation of Sn whose elements have the same

relative order at s1 · · · sn. For example,

red(5276) = 2143.

Then we say that a permutation σ = σ1 · · ·σm occurs in

permutation τ = τ1 · · · τn if there is a subsequence

1 ≤ i1 < · · · < im ≤ n such that red(τi1 · · · τim
) = σ.

For example, if τ = 7 1 4 2 3 5 6, then 2 1 3 occurs in τ .

7 1 4 2 3 5 6

.
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We say that τ avoids σ if σ does not occur in τ .

We let

Sn(σ) = |{τ ∈ Sn : τ avoids σ}|. (1)

We say that σ, τ ∈ Sm are Wilf equivalent if Sn(σ) = Sn(τ) for

all n.
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Given a permutation α = α1 · · ·αn ∈ Sn, let

αr = αn · · ·αn reverse

αc = (n + 1 − α1) · · · (n + 1 − αn) complement

Clearly, if σ occurs in τ , then σr occurs in τ r and

if σ occurs in τ , then σc occurs in τ c. Thus

(i) τ avoids σ iff τ r avoids σr and

(ii)τ avoids σ iff τ c avoids σc.

Thus

1. Sn(1 2 3) = Sn(3 2 1).

2. Sn(2 1 3) = Sn(3 1 2) = Sn(1 3 2) = Sn(2 3 1).
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Lemma 0.1. Sn(1 2 3) = Sn(1 3 2).

Proof Simion and Schmidt (1985)

We define a bijection

f : {σ ∈ Sn : σ avoids 1 3 2} → {σ ∈ Sn : σ avoids 1 2 3}.

We say that an entry in a permutation σ is left-to-right

mininum of σ if it is smaller than all the entries of σ which precede it.

σ = 6 7 3 4 1 2 5 8

The map f keeps the left-to-right minimum the same and writes

the remaining elements in decreasing order.

f(σ) = 6 8 3 7 1 5 4 2
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Theorem 0.2.

Sn(1 3 2) = Cn =

(

2n
n

)

n + 1
. (2)

Stanley-Wilf Conjecture (1980). Let σ be any permutation,

then there exists a constant cσ such that

Sn(σ) ≤ cn
σ.

Recently proved by Marcos and Tardos.
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Definition

Let σ and τ be permutations in Sm.

The we say that σ is Wilf equivalent to τ if Sn(σ) = Sn(τ) for all n.

Variations

1) You repeat the definitions for consecutive occurrences.

2) You can consider so-called dashed patterns. 1 2 − 4 − 3 5.
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The Generalized Factor Order

Let P = (P,≤P ) be a partially ordered set.

Let P ∗ = {w = w1 · · ·wn : wi ∈ P for all i}.

We let ε denote the empty word

For w, u ∈ P ∗, we say that u is a factor of w if w = vuv′ for some

words v, v′ ∈ P ∗. If v = ε, then we say u is prefix of w and if

v′ = ε, then we say u is suffix of w.

Then we define the generalized factor order on P ∗ by declaring

the u = u1 · · ·um ≤P w = w1 · · ·wn if and only if there is and i ≥ 0

such that uj ≤P wi+j for j = 1, . . . , m.

In such a case, we will say that w has an embedding of u starting

at position i + 1.

We say that w avoids u if u 6≤P w.
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Rational Generating Functions

Let Z〈〈P 〉〉 be the algebra of formal power series with integer

coefficients and having the elements of P as noncommuting

variables.

Z〈〈P 〉〉 = {f =
∑

w∈P ∗

c(w)w : c(w) ∈ Z for all w}.

If f ∈ Z〈〈P 〉〉 has no constant term, i.e. c(ε) = 0, then we let

f∗ = ε + f + f2 + f3 + · · · =
1

ε − f
.

We say that f is rational if it can be constructed for the elements

of P using only a finite number of applications of the algebra

operations and the star operation.
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Regular Languages

A language is any L ⊆ P ∗ and it has an associated generating

function

fL =
∑

w∈L

w.

The language L is regular iff fL is rational.
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Definition 0.3. A Deterministic Finite Automaton (DFA) M

is specified by a quintuple M = (Q, Σ, δ, s, F ) where

1. Q is a finite alphabet of state symbols;

2. Σ is an alphabet of input symbols;

3. δ : Q × Σ → Q is a transition function;

4. s ∈ Q is the start state; and

5. F ⊆ Q is a set of accepting or final states.
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Definition 0.4. Let M = (Q, Σ, δ, s, F ) be a DFA.

1. We say that a word QΣ∗ is a configuration. (A configuration

represents a current state of M and remaining unread input.)

2. If px and qy are configurations, then we write px ` qy if x = ay

with a ∈ Σ and δ(p, a) = q. (Here the idea is that if we are in

state p reading the symbol a, then the machine moves to a new

state q and uses up the symbol a if δ(p, a) = q.)

3. If px and qy are configurations, then we say px `1 qy if ps ` qy

and, for k > 1, we say that px `k qy if there exists a

configuration rz such that px ` rz and rz `k−1 qy.

4. If px and qy are configurations, then we say px `∗ qy if there

exists a k ∈ P such that ps `k qy.

5. We say that a word w ∈ Σ∗ is accepted by M if and only if

sw `∗ qε where ε is the empty word and q ∈ F .
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The definition of a Nondeterministic Finite Automaton (NFA)

is similar. That is, an NFA N is again a 5-tuple N = (Q, Σ, δ, s, F )

where Q, Σ, s and F are as in the definition of a DFA but now

δ ⊆ Q × Σ × Q.

In a NFA, δ is called the transition relation.

The definition of configurations for NFA’s is the same for as for

DFA’s, but now we say that px ` qy if x = ay with a ∈ Σ and

(p, a, q) ∈ δ. The definitions of px `k qy, px `∗ qy then remain the

same.

The main difference that there may be more than one sequence of

configurations that leads from px to qy in this case.

A word w ∈ Σ∗ is accepted by N if and only if sw `∗ qε where ε is

the empty word and q ∈ F .
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L(M) is the set of all words accepted by M .

Theorem 0.5. Over a finite alphabet, the following are equivalent.

1. L is regular.

2. L is the set of all words accepted by a DFA.

3. L is the set of all words accepted by a NFA.
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Given u ∈ P ∗, we define three languages.

F(u) = {w ∈ P ∗ : u ≤ w} and F (u) =
∑

w∈F(u) w.

A(u) = {w ∈ P ∗ : w avoids u} and A(u) =
∑

w∈A(u) w.

S(u) equals the set of all w ∈ P ∗ such that the only embedding of u

into w is a suffix of w and S(u) =
∑

w∈S(u) w.

Theorem 0.6. Let P = (P,≤ p) be any poset and let u ∈ P ∗. Then

1. F(u) = S(u)P ∗ and F (u) = S(u)(ε − P )−1 and

2. A(u) = P ∗ − F(u) and A(u) = (ε − P )−1 − F (u).

Hence if one of F(u), A(u), or S(u), then all of F(u), A(u), and

S(u) are rational.
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Weight Generating Functions

Assume that P is a subset of the natural numbers, then for any

word w = w1 · · ·wn in P ∗, we define

|w| = n

Σ(w) = w1 + · · · + wn

wt(w) = t|w|xΣ(w).

F (u; x, t) =
∑

w∈F(u) wt(w).

A(u; x, t) =
∑

w∈A(u) wt(w).

S(u; x, t) =
∑

w∈S(u) wt(w).
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Wilf Equivalence for the Generalized Factor Order

We say that words u and v in P ∗ are Wilf Equivalent relative

P = (P,≤P ), written u v v, if

A(u; x, t) = A(v; x, t).
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The NFA for S(u)

Assume |u| = `.

States: All subsets of {1, . . . , `}.

Initial State: s = ∅.

Alphabet: Σ = P .

Transition Relation:

If T ⊆ {1, . . . , `} and w = w1 · · ·wn is path that leads from ∅ to T ,

then the NFA will be constructed so that if the path is continued,

the only possible possible positions in which an embeding of u can

start are those in the set {m − t + 1 : t ∈ T}.

Final States: T such that ` ∈ T .
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x >0

x >1

x>2

1

1,2,3

1,2

1

1

2

Figure 1: The DFA for w = 1 2 3.
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L0 denote the generating function of the set of all words v that

reach an accepting state starting at state S0,

L1 denote the generating function of the set of all words v that

reach an accepting state starting at state S(1),

L2 denote the generating function of the set of all words v that

reach an accepting state starting at state S(1,2), and

L3 = 1.
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Then we see that we have the following set of equations for

L0, . . . , L3.

L3 = 1 (3)

L2 = t
x3

1 − x
L3 + tx2L2 + txL1 (4)

L1 = t
x2

1 − x
L2 + txL1 (5)

L0 =
x

1 − x
L1. (6)

One can easily solve this system of equations to find that

L0 =
t3x6

(1 − x)2(1 − x − tx + tx3 − t2x4)
(7)
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[1,      )

[3,      )

[3,      )

o

1

1,2,3

1,2

1

1,2

2

1,3

Figure 2: The DFA for w = 1 3 2.
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L0 denote the generating function of the set of all words v that

reach an accepting state starting at state S0,

L1 denote the generating function of the set of all words v that

reach an accepting state starting at state S(1),

L2 denote the generating function of the set of all words v that

reach an accepting state starting at state S(1,2),and

L3 = 1 corresponding to state S(1,2,3) and

L4 = 1 corresponding to state S(1,3).
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Then we see that we have the following set of equations for

L0, . . . , L3.

L4 = 1 (8)

L3 = 1 (9)

L2 = t
x3

1 − x
L3 + tx2L4 + txL1 (10)

L1 = t
x3

1 − x
L2 + t(x + x2)L1 (11)

L0 =
x

1 − x
L1. (12)

One can easily solve this system of equations to find that

L0 =
t3x6

(1 − x)2(1 − x − tx + tx3 − t2x4)
(13)
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Theorem 0.7. If P = (P,≤P ) is a finite poset such that P ⊆ N,

then for all u,

1. F(u), A(u), S(u) are all rational languages.

2. F (u; x, t), A(u; x, t), and S(u; x, t) are rational.

Corollary 0.8. For any u, v ∈ P ∗, it is decidable whether u is Wilf

equivalent to v.
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Theorem 0.9. Let P = (P,≤) be a poset with a weight function

wt : P ∗ → Z[x1, . . . , xn] and u = u1 · · ·un ∈ P ∗. If

(i)
∑

a≥ui
wt(a) for all i,

(ii)
∑

a6≥u wt(a), and

(iii)
∑

a∈P wt(a)

are rational generating functions. Then F (u; x1, . . . , xn),

S(u; x1, . . . , xn) and A(u; x1, . . . , xn) are rational generating

functions.

We construct an automaton Γ that accepts F(u). Let U equal the

set of letters in u.

The set of states of Γ is the set of all w ∈ U ∗ such that |w| ≤ n

including the empty word ε.

The start state is the empty word ε. The final states are the set of

all w ∈ Un such that u ≤ w.
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Now suppose that w = w1 · · ·wk ∈ U∗ and |w| ≤ n.

If w is a final state, then there is loop at w labeled a for every

a ∈ P .

If w is not a final state, then there is an edge from w to ε labeled

with a for every a which is not comparable to any element of U .

If w is not final state and a ≥ v where v ∈ U , then there an edge

labeled with a from w1 . . . wkv if k < n and an edge labeled with a

from w2 . . . wnv if k = n.
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ε

2
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1 11 1
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1

1
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2 21

22

2 2 2 21 2 221
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2
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Figure 3: The NFA for w = 1 2 1.
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1 tx

1−x

2 tx
2

(1−x)(1−tx)

3 tx
3

(1−x)(1−x−tx+tx3)

11 t
2
x
2

(1−x)2

12,21 t
2
x
3

(1−x)2(1−tx)

13,31 t
2
x
4

(1−x)2(1−tx−tx2)

22 t
2
x
4

(1−x)(1−x−tx+tx2
−t2x3)

23,32 t
2
x
5

(1−x)(1−x−tx+tx3
−t2x4)

33 t
2
x
6

(1−x)(1−x−tx+tx3
−t2x4

−t2x5)

111 t
3
x
3

(1−x)3

112,121,211 t
3
x
4

(1−x)3(1−tx)

122,221 t
3
x
5

(1−x)2(1−x−tx+tx2
−t2x3)

212
t
3
x
5(1+tx

2)
(1−x)(1−x+t2x3)(1−x−tx+tx2

−t2x3)
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113,131,311 t
3
x
5

(1−x)3(1−tx−tx2)

213,312
t
3
x
6(1+tx

3)
(1−x)(1−x+t2x4)(1−x−tx+tx3

−t2x4)

123,132,231,321 t
3
x
6

(1−x)2(1−x−tx+tx3
−t2x4)

222 t
3
x
6

(1−x)(1−2x−tx+x2+2tx2
−tx3

−t2x3+t2x4
−t3x5)

133,331 t
3
x
7

(1−x)2(1−x−tx+tx3
−t2x4

−t2x5)

313
t
3
x
7(1+tx

3+tx
4)

(1−x)(1−x+t2x4+t2x5)(1−x−tx+tx3
−t2x4

−t2x5)

223,232,322 t
3
x
7

(1−x)(1−2x−tx+x2+tx2+tx3
−tx4

−t2x4+t2x5
−t3x6)

323
t
3
x
8(1+tx

3)

(1−x)(1−2x−tx+x2+tx2+tx3
−tx4

−t2x4+t2x5
−t3x6

−t3x7+t3x8
−t4x9

−t4x10)

233,332 t
3
x
8

(1−x)(1−2x−tx+x2+tx2+tx3
−tx4

−t2x4+t2x6
−t3x7)

333 t
3
x
9

(1−x)(1−2x−tx+x2+tx2+tx3
−tx4

−t2x4+t2x6
−t3x7

−t3x8)
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The Wilf Equivalences for permutations of length 4

I 1234,1243,1342,1432,2341,2431,3421,4321

II 1324,1423,3241,4231

III 2134,2143,3412,4312

IV 3124,3214,4123,4213

V 2314,2413,3142,4132
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If σ is a permutation in class IV, then S(σ; x, t) = P (x,t)
Q((x,t) where

P (x, t) = t4 x10 (−1 + x − t x4 + t x6 + t2 (1 + t) x10 + t3 x11 + t4 x14 + t4 x15)

and

Q(x, t) = (−1 + x) ×
(

1 − (4 + t) x + 3 (2 + t) x2 − (4 + 3 t) x3 + (1 + 2 t) x4 − t (3 + t) x5+

t (3 + 2 t) x6 + t (−1 + t2) x7 − t2 (2 + 2 t + t2) x8 + t2 (1 + t) x9 +

(−1 + t) t3 x10 + t3 (1 + t + t2) x12 − t4 (1 + t) x13 + (−1 + t) t4 x14 +

t4 (1 + 2 t) x15 − t5 (1 + t) x17 + t7 x18 + t6 (1 + 2 t) x19 +

t7 x20 − t7 x21 + (−1 + t) t7 x22 + 2 t8 x23 + t8 x24
)



Wilf Equivalence and the Factor Order 33

12345, 12354, 12453, 12543, 13452, 13542, 14532, 15432,

23451, 23541, 24531, 25431, 34521, 35421, 45321, 54321

12435, 12534, 14352, 15342, 24351, 25341, 43521, 53421

13245, 13254, 14523, 15423, 32451, 32541, 45231, 54231

21345, 21354, 21453, 21543, 34512, 35412, 45312, 54312

23145, 23154, 45132, 54132

32145, 32154, 45123, 54123

24153, 25143, 34152, 35142

14235, 14325, 15234, 15324, 42351, 43251, 52341, 53241

31425, 31524, 32415, 32514, 41523, 42513, 51423, 52413

24315, 25314, 41352, 51342

24135, 25134, 43152, 53142

34215, 35214, 41253, 51243

34125, 35124, 42153, 52143

41325, 42315, 51324, 52314

41235, 43215, 51234, 53214

42135, 43125, 52134, 53124

13425, 13524, 14253, 15243, 34251, 35241, 42531, 52431

21435, 21534, 43512, 53412

24513, 25413, 31452, 31542

23415, 23514, 41532, 51432

31245, 31254, 45213, 54213

21 classes.
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Wilf equivalence relative to the poset P = (P,≤).

For any word u ∈ P
∗ and integer k ≥ 1, we let u+k be the result of

adding k to each letter.

For example, if u = 1 3 1 2, then u+3 = 4 6 4 5.

Similarly, if w ∈ {k + 1, k + 2, · · · }∗, then we let w−k denote the

result of subtracting k from each letter.

If u = u1 · · ·un, we let ur = un · · ·u1 denote the reverse of u.
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Theorem 0.10. Let P = (P,≤) and u, v ∈ P. Then

(i) u v ur,

(ii) u v v implies u1a
v v1a for all a ≥ 1,

(iii) u1a
v 1au for all a ≥ 1, and

(iv) u v v implies u+k
v v+k for any k ≥ 1.



Wilf Equivalence and the Factor Order 36

Corollary 0.11. Let P = (P,≤) and u, v ∈ P. Then

(i) 1au1b
v 1cu1d whenever a + b = c + d and

(ii) for any of pair increasing words α, α′ ∈ {1, . . . , k + 1}∗ and

decreasing words β, β′ ∈ {1, . . . , k + 1}∗ such that for all

1 ≤ i ≤ k, the number of occurrences of i in αβ equals the

number of occurrences of i ∈ α′β′, u v v implies

αu+kβ v α′v+kβ′.
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Theorem 0.12. Let n ≥ 3, u = α(n − 1)βnγ, and

v = αnβ(n − 1)γ where α, β, γ ∈ {1, . . . , n − 1}∗. Then u v v.

We should also observe that interchanging the the positions of the

top two letters, n and n− 1, in a word does not necessarily preserve

Wilf equivalence when there is more than one occurrence of n. For

example, 122 6v 212.
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Example

We need a bijection Θ : A(123) → A(132).

Case 1. Use the idenity on A(123) ∩ A(132).

Case 2 Thus you need to define

Θ : A(123) −A(132) → A(132) −A(123).

1322211

1232211

1223211

1222311
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Using all of the previous results, we explain all but two cases of the

Wilf equivalences for S5.

That is, our results imply that 21345 v 21354 v 45312 v 54312 and

21453 v 21543 v 34512 v 35412, but they do not tell why these

two groups are Wilf equivalent to each other.

Similarly our results imply that 31425 v 31524 v 42513 v 52413

and 32415 v 32514 v 41532 v 51432 but they do not tell us why

these two groups are Wilf equivalent to each other.
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There is another phenomenon that we observed from our

computations of the generating functions S(u; x, t). It seems to be

the case that if u1 · · ·un v v1 · · · vn, then uk
1 · · ·u

k
n v vk

1 · · · vk
n for all

k ≥ 2. That is, the operation of replacing each letter in word by k

copies of itself seems to preserve Wilf equivalence. For example, we

know 132 v 321. Then one can compute that

S(113322; x, t) = S(332211; x, t) =

x18(1+x)2(1+x−x4)(1+x3−x6)2

(−1+x)3(−1+2x+x4−x5+x6+x7+x9+2x12−x14+3x15+6x16+4x17−3x19−3x20−x21)

so that 113322 v 332211. Similarly, we have computed that

S(111333222; x, t) = S(333222111; x, t)

so that 111333222 v 333222111.
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Strong Wilf Equivalence

Given words u and w, we let EM(u, w) equal the set of all i such

that u has an embedding in w which starts at position i. For

example if u = 123 and w = 11334112456, then

EM(u, w) = {2, 3, 7, 8, 9}.

Then we say that u is strongly Wilf equivalent to v, written

u vs v, if there is a weight preserving bijection from Γ : P
∗ → P

∗

such that for all w ∈ P
∗, EM(u, w) = EM(v, Γ(w)).
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Theorem 0.13. If u = u1 · · ·un and v = v1 · · · vn are words in P
∗,

then u vs w implies uk
1 · · ·u

k
n vs vk

1 · · · vk
n.

Fix k ≥ 2 and assume that u ∼s w. Thus there is a weight

preserving bijection Γ : P
∗ → P

∗ such that for all w ∈ P
∗,

EM(u, w) = EM(v, Γ(w)).
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For any word w ∈ P and any 1 ≤ i ≤ k, we let w(i) denote the word

that results by taking the letters in w that are in positions of the

form i + jk. For example, if w = 3 3 4 1 2 4 6 2 1 2 and k = 3, then

w(1) = 3 1 6 2, w(2) = 3 2 2, and w(3) = 4 4 1.

It is easy see that the positions which start an embedding of

uk
1 · · ·u

k
n in w are completely determined by the positions which

start an embedding of u1 · · ·un in each of the w(i)’s. We then

define a map Γ(k) : P
∗ → P

∗ such that Γ(k)(w) = w̄ if and only if for

each 1 ≤ i ≤ k, w̄(i) = Γ(w(i)).
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Theorem 0.14. Let u and v be words of length n in P
∗ and let

a ≥ 1. Then

(1) 1au vs u1a.

(2) u vs v implies 1au vs 1av and u1a
vs v1a.

(3) For all k ≥ 1, u vs v implies u+k
vs v+k



Wilf Equivalence and the Factor Order 45

Corollary 0.15. Let P = (P,≤) and u, v ∈ P. Then

(1) 1au1b
vs 1cu1d whenever a + b = c + d and

(2) for any pair increasing words α, α′ ∈ {1, . . . , k}∗ and decreasing

words β, β′ ∈ {1, . . . , k}∗ such that for all 1 ≤ i ≤ k, the number

of occurrences of i in αβ equals the number of occurrences of

i ∈ α′β′, we have that u vs v implies αu+kβ vs α′v+kβ′.
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We claim that 2 1 4 3 is not strongly Wilf equivalent to 3 4 1 2.

Consider how we can construct of minimum weight word w of

length 7 such that EM(2 1 4 3, w) = {1, 3, 4}. That is, consider the

following calculations.
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2 1 4 3 
2 1 4 3

2 1 4 3

2 1 4 3 4 4 3

3 4 1 2
3 4 1 2

3 4 1 2

3 4 3 4 4 2 2

Figure 4: Calculations of minimum weight words for embeddings.
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Explicit Formulas

Theorem 0.16. For any s ≥ 2, ` ≥ 1, and k ≥ 0,

S(1ks` : x, t) = (14)

xk+`stk+`

(1 − x)k+1((xst)`−1(1 − xt[s − 1]x) +
∑`−2

r=1(1 − x)r(1 − x − xt)(xst)l−2−r)

where [t]x = 1 + x + x2 + · · · + xt−1.
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Define a sequence of polynomials Bn(x, t) for n ≥ 2 which are

defined by recursion as follows.

B2(x, t) = xt (15)

Bk+1(x, t) = xk+1t(Bk(x, t) − (1 − x)k−2) + xt(1 − x)k−2 for k ≥ 2.

Theorem 0.17. For n ≥ 2,

S(12 · · ·n; x, t) =
x(n+1

2 )

(1 − x)2Cn(x, t)
(16)

where Cn(x, t) = (1 − x)n−2 − Bn(x, t).
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The Mobius Function of the Factor Order

For any words u and v, we say u � w if u is a factor of w. (This is

the generalized factor order for the antichain.)

We say that u is a left factor (right factor) of w is u prefix (suffix)

of w.

The dominant outer factor of w, o(w), is the longest word other

than w which is both a left factor and a right factor.

The dominant inner factor of w, i(w), is w2 · · ·wn−1 if

w = w1 · · ·wn.

A word trivial of w if all of its letters are equal, i.e. w = kn.

Example: w = abbaabb, then o(w) = abb and i(w) = bbaab.
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Theorem 0.18. (Björner). In the factor order, if u � w, then

µ(u, v) =







































µ(u, o(w)) if |w| − |u| ≥ 2 and u � o(w) 6� i(w)

1 if |w| − |u| = 2, w is not trivial,

and u = o(w) or u = i(w)

(−1)|w|−|u| if |w| − |u| < 2,

0 otherwise

(17)

Question: Is {w : µ(u, w) 6= 0} rational?

Answer No!
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Lemma 0.19. (Pumping Lemma Let M = (Q, Σ, δ, s, F ) be a

DFA and p = |Q|. For all words w ∈ L(M) such that |w| ≥ p, w

can be factored as w = xyz for some words x, y, and z such that

1. |xy| ≤ p,

2. |y| ≥ 1, and

3. for all i ≥ 0, xyiz ∈ L(M).
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Idea of the proof that {w : µ(u, w) 6= 0}.

Suppose we are give p from the pumping lemma.

Then w = abp+1ab2p+2abp+1a and u = a.

o(w) = abp+1a i(w) = bp+1ab2p+2abp+1

Thus u � o(w) 6� i(w) and, hence, µ(u, w) = µ(a, o(w)).

If v = abn+1a, then o(v) = a and i(v) = bp+1. Hence

µ(a, v) = µ(a, o(v)) = µ(a, a) = 1.

However, then pumping lemma fails!
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Case 1: x = ε and y = a.

Then v = xy3z equals a3bp+1ab2p+2abp+1a which implies o(w) = a

and a � i(w) so µ(u, v) = 0.

Case 2: x = ε and y = abi for some 1 ≤ i ≤ p − 1.

Then v = xy2z = abiabibp+1−iab2p+2abp+1a.

o(v) = a and i(v) = biabibp+1−iab2p+2abp+1 so µ(a, v) = 0.

Case 3: x 6= ε and x = abi for some 1 ≤ i ≤ p − 2 and y = bj . for

some j.

Then v = xyp+1z = abib(p+1)jbp+1−i−jab2p+2abp+1a.

o(v) = a and i(v) = bib(p+1)jbp+1−i−jab2p+2abp+1 so µ(a, v) = 0.
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Open Questions

(1) If u ∼ v, then must v be a rearrangement of u?

(2) Does u ∼ v imply that there is a bijection Θ : P
∗ → P

∗

such that for all w ∈ P
∗, w ∈ F(u) ⇐⇒ Θ(w) ∈ F(v) and

Θ(w) is a rearrangement of w?

This is true for all the examples in the tables.

That is, suppose that [m] is the finite poset consisting of the

integers [m] = {1, . . . , m} under the standard order. For any word

w ∈ [m]∗ and i ∈ [m], let ci(w) equal the number of occurrences of i

in w. Then we can define the weight of of w,
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W[m](w) =
∏m

i=1 x
ci(w)
i and set

S(u; x1, . . . , xm) =
∑

w∈S(u)

W[m](w),

F (u; x1, . . . , xm) =
∑

w∈F(u)

W[m](w), and

A(u; x1, . . . , xm) =
∑

w∈A(u)

W[m](w).
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(3) Find a theorem which, together with the results

already proved, explains all the Wilf equivalences in S5. In

particular, our bijective results show that

21345 ∼ 21354 ∼ 45312 ∼ 54312 and

21453 ∼ 21543 ∼ 34512 ∼ 35412

but not why a permutation of the first group is Wilf equivalent to

one of the second. The other row of Table 1 which breaks into two

groups is

31425 ∼ 31524 ∼ 42513 ∼ 52413 and

32415 ∼ 32514 ∼ 41523 ∼ 51423.
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(4) Is it always the case that the number of elements of Sn

Wilf equivalent to a given permutation is a power of 2?

(5) Is it true that 312 ∼s 213?


