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Wilf Equivalence for Permutations

Given a sequence of distinct numbers s = s1 - - - s, we let red(s)
denote the permutation of S,, whose elements have the same
relative order at s; ---s,. For example,

red(5276) = 2143.

Then we say that a permutation o = o7 - -- 0, Ooccurs in
permutation 7 = 71 - - - 7, if there is a subsequence
1 <4 <+ <ty <nsuch that red(r;, -7, ) = 0.

For example, if =714 235 6, then 2 1 3 occurs in 7.
7142356
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We say that 7 avoids ¢ if ¢ does not occur in 7.

We let
Sp(o) ={1T € S, : 7 avoids o }|. (1)

We say that o, 7 € S, are Wilf equivalent if S,,(c) = S, (7) for
all n.
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Given a permutation o« = a1 -+ «p, € 5, let

o = «, - -q, reverse

a“ = (n+1—a1)---(n+1—a,) complement

Clearly, if o occurs in 7, then ¢" occurs in 7" and
if o occurs in 7, then ¢¢ occurs in 7¢. Thus
(i) 7 avoids o iff 7" avoids ¢” and
(ii)7 avoids o iff 7¢ avoids o°.
Thus
1. S,(123)=5,321).

2. 5,(213)=28,(312)=5,(132)=5,(231).
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Lemma 0.1. S,(1 2 3) =5,(1 3 2).

Proof Simion and Schmidt (1985)
We define a bijection

f:{oc€eS,:0avoids 132} —-{oc€S,:0avoids 12 3}.

We say that an entry in a permutation o is left-to-right
maninum of ¢ if it is smaller than all the entries of o which precede it.

c=067341258

The map f keeps the left-to-right minimum the same and writes
the remaining elements in decreasing order.

flo)=68371542
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Theorem 0.2.

Sn(132)=C, = 7521;:)1' (2)

Stanley-Wilf Conjecture (1980). Let o be any permutation,
then there exists a constant ¢, such that

Sp(o) < cb.

Recently proved by Marcos and Tardos.
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Definition

Let o and 7 be permutations in 5,,.

The we say that o is Wilf equivalent to 7 if S,,(c) = S,,(7) for all n.
Variations

1) You repeat the definitions for consecutive occurrences.

2) You can consider so-called dashed patterns. 1 2 —4 — 3 5.
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The Generalized Factor Order
Let P = (P, <p) be a partially ordered set.

Let P* ={w =w - wy, : w; € P for all i}.

We let € denote the empty word

For w,u € P*, we say that u is a factor of w if w = vuv’ for some
words v, v’ € P*. If v = ¢, then we say u is prefix of w and if

v’ = ¢, then we say u is suffix of w.

Then we define the generalized factor order on P* by declaring
the u =uy - Uy, <p w=w;---w, if and only if there is and ¢ > 0
such that u; <p w;4; for y =1,...,m.

In such a case, we will say that w has an embedding of u starting
at position 7 + 1.

We say that w avoids u if u £p w.
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Rational Generating Functions

Let Z{{P)) be the algebra of formal power series with integer
coefficients and having the elements of P as noncommuting

variables.

Z((P)) ={f =) clw)w:c(w) € Z for all w}.

weP*

If f € Z{{P)) has no constant term, i.e. ¢(e¢) = 0, then we let

1

ff=e+f+f+F+ - =—0
e—f

We say that f is rational if it can be constructed for the elements
of P using only a finite number of applications of the algebra

operations and the star operation.
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Regular Languages

A language is any £ C P* and it has an associated generating

fczzw.

weL

function

The language L is regular iff f, is rational.

10



WILF EQUIVALENCE AND THE FACTOR ORDER

Definition 0.3. A Deterministic Finite Automaton (DFA) M
is specified by a quintuple M = (Q, X, 6, s, F') where

1. @) s a finite alphabet of state symbols;
2. X is an alphabet of input symbols;

3. 0:Q x X — Q is a transition function;
4. s € () 1s the start state; and

5. F' C Q is a set of accepting or final states.

11
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Definition 0.4. Let M = (Q,,9,s,F) be a DFA.

1. We say that a word QX* is a configuration. (A configuration

represents a current state of M and remaining unread input.)

2. If px and qy are configurations, then we write px - qy if x = ay
with a € ¥ and §(p,a) = q. (Here the idea is that if we are in
state p reading the symbol a, then the machine moves to a new
state q and uses up the symbol a if d(p,a) =q.)

3. If pxr and qy are configurations, then we say px -1 qy if ps F qy
and, for k > 1, we say that px F* qu if there exists a

configuration rz such that pr - rz and rz F¥=1 qy.

4. If px and qy are configurations, then we say px =* qu if there
exists a k € P such that ps FF qy.

5. We say that a word w € X* is accepted by M if and only if
sw F* ge where € is the empty word and q € F'.
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The definition of a Nondeterministic Finite Automaton (NFA)
is similar. That is, an NFA N is again a 5-tuple N = (@, 3,9, s, F)
where (), 2, s and F are as in the definition of a DFA but now

d)C QXX XxQ.

In a NFA, ¢ is called the transition relation.

The definition of configurations for NFA’s is the same for as for
DFA’s, but now we say that px - qy if x = ay with a € X and
(p,a,q) € 5. The definitions of px F* qy, px F* qy then remain the

Salne.

The main difference that there may be more than one sequence of
configurations that leads from px to qy in this case.

A word w € X* is accepted by N if and only if sw F* ge where € is
the empty word and g € F'.
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L(M) is the set of all words accepted by M.

Theorem 0.5. OQver a finite alphabet, the following are equivalent.
1. L 1s reqular.
2. L 1s the set of all words accepted by a DFA.
3. L 1s the set of all words accepted by a NFA.

14
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Given u € P*, we define three languages.
Fu)={w € P*:u<w}and F(u) =}, crn w-
A(u) ={w € P*: w avoids u} and A(u) = >, c 4 W-

S(u) equals the set of all w € P* such that the only embedding of u
into w is a suffix of w and S(u) = ), cs(u) W

Theorem 0.6. Let P = (P, < p) be any poset and let w € P*. Then
1. F(u) = S(u)P* and F(u) = S(u)(e — P)~1 and
2. A(u) = P* — F(u) and A(u) = (e — P)~1 — F(u).

Hence if one of F(u), A(u), or S(u), then all of F(u), A(u), and

S(u) are rational.

15
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Weight Generating Functions

Assume that P is a subset of the natural numbers, then for any

word w = wq - - - w,, in P*, we define

w] = n
Y(w) = w14+ wy
wt(w) = tlvlg=w),

F(usa,t) = 3 e r wt(w).
Alu; 2, 1) = 3 e aqw) WHW).

S(u;z,t) = ) es(w) WHw).

16
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Wilf Equivalence for the Generalized Factor Order

We say that words w and v in P* are Wilf Equivalent relative
P = (P,<p), written u « v, if

A(u;z,t) = A(v; x, t).

17
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The NFA for S(u)

Assume |u| = £.

States: All subsets of {1,...,¢}.

Initial State: s = (.

Alphabet: > = P.

Transition Relation:

IfTC{1,...,4} and w = wy - - - wy, is path that leads from ) to T,
then the NFA will be constructed so that if the path is continued,
the only possible possible positions in which an embeding of u can

start are those in the set {m —t+1:¢t € T}.

Final States: T such that ¢/ € T.

18
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Figure 1: The DFA for w =1 2 3.

19
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Ly denote the generating function of the set of all words v that

reach an accepting state starting at state S,

L4 denote the generating function of the set of all words v that

reach an accepting state starting at state Sy),

Lo denote the generating function of the set of all words v that

reach an accepting state starting at state S(; »), and

Ls=1.

20



WILF EQUIVALENCE AND THE FACTOR ORDER

Then we see that we have the following set of equations for
Lo, ..., Ls.

Ly = 1
5133
Lo = tl L3—|—t$2L2—|—t£EL1
— X
5172
Ll = L2—|—tZL'L1
l—=x
X
Ly = L.
0 1 _ o 1

One can easily solve this system of equations to find that

t3 20
(1 —2)%2(1 —x — to + ta3 — t2x4)

Lo =
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[3.00)

[3.00)
1’2 ’
[1.00)

Figure 2: The DFA for w =1 3 2.

22
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Ly denote the generating function of the set of all words v that

reach an accepting state starting at state S,

L+ denote the generating function of the set of all words v that

reach an accepting state starting at state Sy),

Lo denote the generating function of the set of all words v that

reach an accepting state starting at state S(; 2),and
L3 =1 corresponding to state S(; 2 3y and

Ly =1 corresponding to state S(; 3).

23
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Then we see that we have the following set of equations for
Lg, ..., Ls.

L, = 1 (8)
Ly = 1 (9)
3
Lo = tl L3+tI2L4—|—tZIJL1 (10)
— X
5133
— X
X
Lo = Lq. 12
’ 1—z (12)

One can easily solve this system of equations to find that

t3 20
Lo = 13
" T A —2)2(1 — x — tx + tad — 22%) (13)
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Theorem 0.7. If P = (P,<p) is a finite poset such that P C N,
then for all u,

1. F(u), A(u), S(u) are all rational languages.

2. F(u;x,t), A(u;x,t), and S(u;x,t) are rational.

Corollary 0.8. For any u,v € P*, it s decidable whether u is Wilf
equivalent to v.

25
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Theorem 0.9. Let P = (P, <) be a poset with a weight function
wt: P* — Zlxy,...,xn] andu=wuy---u, € P*. If

(1) D u>y, wila) for all i,
(1) D, WHa), and
(ii1)) . p wi(a)

are rational generating functions. Then F(u;x1,...,Ty,),
S(u;x1,...,xy) and A(u;z1,...,xy,) are rational generating
functions.

We construct an automaton I' that accepts F(u). Let U equal the
set of letters in w.

The set of states of I' is the set of all w € U* such that |w| <n
including the empty word e.

The start state is the empty word e. The final states are the set of
all w e U™ such that v < w.
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Now suppose that w = wy ---wg € U* and |w| < n.

If w is a final state, then there is loop at w labeled a for every
a € P.

If w is not a final state, then there is an edge from w to € labeled
with a for every a which is not comparable to any element of U.

If w is not final state and a > v where v € U, then there an edge
labeled with a from w; ... wgv if kK < n and an edge labeled with a

from wsy ... w,v if kK = n.

27
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1 2 1 2
H E /\H “

z [ NG /

1

Figure 3: The NFA forw =1 2 1.

28
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2
1 1—x2x
2
2 (1—:13){121—2533)
3 tx
(1—2)(1—x—txttx3)
t2 2
11 (1—x)2
t2:c3
12,21 (1—x)2(1—tx)
t2az
13,31 (1—z)2(1—tzx—tx?)
99 t2:c
(1—x)(1—z—txt+tx2 —t223)
t2:c
23,32 (1—2)(I—z—tafted —t2z%)
33 t2$6
(1—96)(1—:1:—tx—|—t:c3 —t2£€4—t25€5)
111 o
(1—x)3
3 2%
112,121,211 (1—=2)3(1_tx)
t3:c
122,221 (1—x)2(1—x—tx—|—tx2—t2$3)
212 t325 (1+ta?)

(1—x)(1—x+t223)(1—x—tx+tzx2—t223)

29
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320
113,131,311 T s
t°x® (14-tx>)
213,312 (1—x)(1—z+t22?)(1—x—txt+tx3 —t2z?)
320
123,132,231,321 e I
222 e
(1—x)(1—2x—txtax24+2tx2 —tax3 —t223 41224 —¢329)
t3$7
133,331 (A—z)2(A—z—tette3 —t2z?—t225)
313 3z (1+tx>+ta?)
(1—x)(1—x+t2224t225)(1—x—taxttad —t22% —1225)
327
223,232,322 (1—:1:)(1—291;—tx—|—a:2—|—7§a:2—|—t:1:3—‘ta:4—t2a:4—|—t23:5 —1326)
393 t3 2% (1+tx>)
(1—x)(1—2x—txtax?tte2ftaxd —toxd — 1220414225 326 1327 L1328 1429 —14410)
328
233,332 (1—x)(1—2zx—txtax?t+te2ftxd —tet —t224 44226 —1327)
333 ]
(1—x)(1—2x—txta?tte2ftad —toxd —t224 41226 1327 —£329)
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The Wilf Equivalences for permutations of length 4

I

1234,1243,1342,1432,2341,2431,3421,4321

II

1324,1423,3241,4231

I11

2134,2143,3412,4312

IV

3124,3214.,4123,4213

2314,2413,3142,4132

31
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If o is a permutation in class IV, then S(o;x,t) = % where
Pz, t) =t*2 (-1 +z—taz* +t25 + 2 (1 + )20 + 2 2+t 2™ + 4 21P)

and

Q(z,t) = (—-142x) X
(1-(d+t)z+32+t)a”—@A+3)2° +(1+28)z* —t(3+1) 2"+
t(3+2)al +t(—1+t)a’ —t2 (242t +tH)a®+ 2 (1 +t)2” +
(1420 + 3 QA+t + )22 —t* A+ )2 + (—1+ )t 2™ +
tr1+20) 2 =P L+ )"+t 2 (1 +28) 2™ +
t751:20—t7a:21+(—1+t)t7a:22+2t8x23+t8x24)
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12345, 12354, 12453,
23451, 23541, 24531,

12543,
25431,

13452,
34521,

13542, 14532, 15432,
35421, 45321, 54321

12435, 12534, 14352,

15342,

24351,

25341, 43521, 53421

13245, 13254, 14523,

15423,

32451,

32541, 45231, 54231

21345, 21354, 21453,

21543,

34512,

35412, 45312, 54312

23145,

23154,

45132,

54132

32145,

32154,

45123,

54123

24153,

25143,

34152,

35142

14235, 14325, 15234,

15324,

42351,

43251, 52341, 53241

31425, 31524, 32415,

32514,

41523,

42513, 51423, 52413

24315,

25314,

41352,

51342

24135,

25134,

43152,

53142

34215,

35214,

41253,

51243

34125,

35124,

42153,

52143

41325,

42315,

51324,

52314

41235,

43215,

51234,

53214

42135,

43125,

52134,

53124

13425, 13524, 14253,

15243,

34251,

35241, 42531, 52431

21435,

21534,

43512,

53412

24513,

25413,

31452,

31542

23415,

23514,

41532,

51432

31245,

31254,

45213,

54213

21 classes.

33



WILF EQUIVALENCE AND THE FACTOR ORDER

W ilf equivalence relative to the poset P = (P, <).

For any word u € P* and integer £ > 1, we let ut® be the result of
adding k to each letter.

For example, if u =131 2, then u™™ =46 4 5.

Similarly, if w € {k+ 1,k +2,---}*, then we let w™" denote the

result of subtracting £ from each letter.

Ifu=wuy---u,, welet u” =u, ---u; denote the reverse of u.

34
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Theorem 0.10. Let P = (P, <) and u,v € P. Then
(i) uw ',

(ii) w v implies ul® «~ v1* for all a > 1,

(iii) ul® «~ 1% for alla > 1, and

(iv) u v implies u™™* —~ v* for any k > 1.

35
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Corollary 0.11. Let P = (P, <) and u,v € P. Then
(i) 1%ul® «~ 1°ul? whenever a +b = c+d and

(ii) for any of pair increasing words o, o’ € {1,.... k+1}* and
decreasing words B, 0" € {1,... k+ 1}* such that for all
1 <1 <k, the number of occurrences of © in a3 equals the

number of occurrences of i € ’'B', u —~ v implies
autkg /v Tk,
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Theorem 0.12. Letn > 3, u = a(n — 1)Bn~y, and
v=anfB(n — 1)y where a, B3,y € {1,...,n—1}*. Then u « v.

We should also observe that interchanging the the positions of the
top two letters, n and n — 1, in a word does not necessarily preserve
Wilf equivalence when there is more than one occurrence of n. For
example, 122 A 212,

37
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Example
We need a bijection © : A(123) — A(132).

Case 1. Use the idenity on 4(123) N .A(132).

Case 2 Thus you need to define
O : A(123) — A(132) — A(132) — A(123).

1322211
1232211
1223211
1222311

38
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Using all of the previous results, we explain all but two cases of the
Wilf equivalences for Ss.

That is, our results imply that 21345 «~ 21354 «~ 45312 «~ 54312 and

21453 «~ 21543 «~ 34512 «~ 35412, but they do not tell why these
two groups are Wilf equivalent to each other.

Similarly our results imply that 31425 «~ 31524 «~ 42513 «~ 52413
and 32415 «~ 32514 «~ 41532 «~ 51432 but they do not tell us why
these two groups are Wilf equivalent to each other.
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There is another phenomenon that we observed from our
computations of the generating functions S(u;x,t). It seems to be
the case that if uy---u, v~ vy ---v,, then u’fuﬁ “ v’f---vﬁ for all
k > 2. That is, the operation of replacing each letter in word by k&
copies of itself seems to preserve Wilf equivalence. For example, we

know 132 «~ 321. Then one can compute that

S(113322; x,t) = S(332211;x,t) =

¥ (1+2)?(1+z—a*) (142> —2°)?
(—14x)3(—142x+z?—a5+xb+a"+294 2212 —x 144321546216 4+ 4217 — 319 —3220 —21)

so that 113322 «~ 332211. Similarly, we have computed that
S(111333222; z,t) = S(333222111; z, t)

so that 111333222 «~ 333222111.
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Strong Wilf Equivalence

Given words u and w, we let EM (u, w) equal the set of all ¢ such
that u has an embedding in w which starts at position 2. For
example if u = 123 and w = 11334112456, then

EM(u,w) =42,3,7,8,9}.

Then we say that u is strongly Wilf equivalent to v, written
u g v, if there is a weight preserving bijection from I' : P* — P*
such that for all w € P*, EM(u,w) = EM (v, I'(w)).
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Theorem 0.13. Ifu=wuy---u, and v = vy ---v, are words in P*,

k k k k

then u g w implies uy - - -uy g VY -+ -0, .

Fix k£ > 2 and assume that u ~4 w. Thus there is a weight
preserving bijection I' : P* — P* such that for all w € P*,

EM(u,w) = EM(v, ' (w)).

42
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For any word w € P and any 1 < i < k, we let w(® denote the word
that results by taking the letters in w that are in positions of the
form 7 + jk. For example, if w=3341246212and k=3, then
w) =3162, w? =322 and w® =41 1.

It is easy see that the positions which start an embedding of

k k

uy - --u, in w are completely determined by the positions which

start an embedding of u; - - - u,, in each of the wD’s. We then
define a map I'*) : P* — P* such that I'**)(w) = w if and only if for
each 1 <i <k, w® =T(w®).

43
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Theorem 0.14. Let u and v be words of length n in P* and let
a>1. Then

(1) 1% g ul®.
(2) u s v implies 1%u g 1% and ul® g v1°.

(3) For allk > 1, u vy v implies u™F «~, vtF

44
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Corollary 0.15. Let P = (P, <) and u,v € P. Then
(1) 1%ulb «~y 1°ul? whenever a +b = c+d and

(2) for any pair increasing words a, o’ € {1,...,k}* and decreasing
words 3,58 € {1,...,k}* such that for all 1 < i < k, the number
of occurrences of v in a3 equals the number of occurrences of

i € o', we have that u «—g v implies aut*3 g o’vT*3 .

45
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We claim that 2 1 4 3 is not strongly Wilf equivalent to 3 4 1 2.
Consider how we can construct of minimum weight word w of
length 7 such that EM(2 14 3,w) = {1,3,4}. That is, consider the
following calculations.

46
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2143 3412
2143 3412
2143 3412
2143443 3434422

Figure 4: Calculations of minimum weight words for embeddings.

47
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Explicit Formulas
Theorem 0.16. For any s> 2, > 1, and k > 0,

S(1Fst 1 x,t) = (14)
ZEk—I-EStk_'—E

(1 — @)+ ((25t) 1 (1 = wtfs — 1],) + 30,21 (1 = 2)7 (1 — @ — at)(x5t)!=2")

=

where [t], =1+ x+ 2%+ + 271
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Define a sequence of polynomials B, (x,t) for n > 2 which are
defined by recursion as follows.

By(x,t) = «at (15)
Bipii(z,t) = z"W(By(z,t) — (1 —2)* %) + at(1 —2)* 2 for k > 2.

Theorem 0.17. Forn > 2,

S(12---n;z,t) = (16)

(1 —2)?Cp(z,t)
where Cp(x,t) = (1 —x)" "% — B, (x,1).
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The Mobius Function of the Factor Order

For any words u and v, we say u < w if u is a factor of w. (This is
the generalized factor order for the antichain.)

We say that u is a left factor (right factor) of w is u prefix (suffix)
of w.

The dominant outer factor of w, o(w), is the longest word other
than w which is both a left factor and a right factor.

The dominant inner factor of w, i(w), is ws - - - wy_1 if

W= Wi Wy,.
A word trivial of w if all of its letters are equal, i.e. w = k™.

Example: w = abbaabb, then o(w) = abb and i(w) = bbaab.
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Theorem 0.18. (Bjorner). In the factor order, if u < w, then

i, o(w))  if lw| — [u| > 2 and u < o(w) £ i(w)
1 if |w| — |u| = 2, w is not trivial,
p(u,v) = and u = o(w) or u = i(w)

(—D)lwl=lulif lw| — |u| < 2,

\ 0 otherwise

(17)

Question: Is {w : pu(u,w) # 0} rational?
Answer No!
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Lemma 0.19. (Pumping Lemma Let M = (Q,%,6,s, F) be a
DFA and p = |Q)|. For all words w € L(M) such that |w| > p, w

can be factored as w = xyz for some words x, y, and z such that
1. |zy| < p,

2. lyl > 1, and

8. for alli >0, xy'z € L(M).

52



WILF EQUIVALENCE AND THE FACTOR ORDER

Idea of the proof that {w : u(u,w) # 0}.
Suppose we are give p from the pumping lemma.
Then w = ab?Ttab*?2abP? g and v = a.

o(w) — abPt1lg z(w) — ppt+1p2p+2 4 ppt1

Thus u < o(w) ¥ i(w) and, hence, p(u,w) = u(a, o(w)).

If v = ab™a, then o(v) = a and i(v) = bP*1. Hence

pla,v) = pla, o(v)) = pla,a) = 1.

However, then pumping lemma fails!
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Case 1: =€ and y = a.
Then v = xy°z equals a’bPT1ab?*?T2abPT1q which implies o(w) = a

and a < i(w) so pu(u,v) = 0.

Case 2: z =€ and y = ab’ for some 1 <7 <p—1.
Then v = 2y?z = ab'ab'bPT1 " qb?PT2qbPHq.

o(v) = a and i(v) = b'ab'bP 1 ab*P2abPT! so p(a,v) = 0.
Case 3: v # e and z = ab* for some 1 <i<p—2and y =¥ . for
some 7.

Then v = zyPHlz = abtpPHDippti—i—jgp2p+24ppt+lg,

o(v) = a and i(v) = boPTVIpPHL=i=5qp2P+24hr+1 50 1i(a,v) = 0.
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Open Questions
(1) If u ~ v, then must v be a rearrangement of u?

(2) Does u ~ v imply that there is a bijection O : P* — P*
such that for all w € P*, w € F(u) <— O(w) € F(v) and

O(w) is a rearrangement of w?
This is true for all the examples in the tables.

That is, suppose that [m)] is the finite poset consisting of the
integers [m] = {1,...,m} under the standard order. For any word
w € [m]* and i € [m], let ¢;(w) equal the number of occurrences of i

in w. Then we can define the weight of of w,
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(3) Find a theorem which, together with the results
already proved, explains all the Wilf equivalences in S5. In

particular, our bijective results show that
21345 ~ 21354 ~ 45312 ~ 54312 and
21453 ~ 21543 ~ 34512 ~ 35412

but not why a permutation of the first group is Wilt equivalent to
one of the second. The other row of Table 1 which breaks into two

groups 1is
31425 ~ 31524 ~ 42513 ~ 52413 and
32415 ~ 32514 ~ 41523 ~ 51423.
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(4) Is it always the case that the number of elements of 5,

Wilf equivalent to a given permutation is a power of 27

(5) Is it true that 312 ~, 2137
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