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To begin we will need to review the product and coproduct rules of the main bases of
algebras NSym and QSym. I state them here without proof (some of them would usually
be taken as definition). I will use bold face letters to indicate elements of NSym and
capital letters to indicate elements of QSym.

A few notational remarks: If a composition has only one entry (r), then I may simplify
notation by just r.

Proposition 1. The product/coproduct rules of NSym. Let hα := hα1hα2 · · ·hα`(α), then

hαhβ = h(α,β)

Since, ∆(hn) =
∑n

i=0 hi ⊗ hn−i, then

∆(hα) =
∑

β+γ=α

hβ ⊗ hγ

where in this last sum the sum is over all weak compositions β and γ of length `(α).

Proposition 2. The product rules in QSym. Let {Mα}α be the dual basis to {hα}α. Then

MαMβ =
∑

γ∈αt̃tβ

Mγ

where for a, b ∈ Z and α ∈ Zr and β ∈ Zs for r, s ≥ 0,

(a, α)t̃t(b, β) = a · (αt̃t(b, β)) ] b · ((a, α)t̃tβ) + ](a+ b) · (αt̃tβ)

where a · S represents the operation of concatenating an entry a in front of each of the
elements of S and αt̃t() = ()t̃tα = {α}. The coproduct rule is

∆(Mα) =
∑

(β,γ)=α

Mβ ⊗Mγ .

The dual pairing between QSym and NSym will be denoted 〈·, ·〉 : NSym⊗QSym→ Q.
The dual pairing is defined on the basis 〈hα,Mβ〉 = δα,β. Note that the product and the
coproduct and the pairing are defined so that

〈fg, H〉 = 〈f ⊗ g,∆(H)〉

and

〈g, GH〉 = 〈∆(f), G⊗H〉 .
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Now the operators which are dual to multiplication by an element of QSym will be
denoted G⊥ where G ∈ QSym and is defined to be

G⊥(f) =
∑
α

〈f , GMα〉hα .

The elements which are dual to the left multiplication by an element of NSym will be
denoted

Lf⊥(G) =
∑
α

〈fhα, G〉Mα

and the dual to right multiplication will be denoted

Rf⊥(G) =
∑
α

〈hαf , G〉Mα .

In order to derive the commutation relations, we need the following general formula for
computing the action of an element dual to multiplication by its action on a product. This
result is more general (the proof works for any pair of dual graded Hopf algebras, but I
choose to state it for QSym in particular.

Proposition 3. For G ∈ QSym and f ,g ∈ NSym, if ∆(G) =
∑

iG
(i) ⊗G(i), then

G⊥(fg) =
∑
i

G(i)⊥(f)G⊥(i)(g) .

Proof.

G⊥(fg) =
∑
β

〈fg, GMα〉hbeta

=
∑
β

〈f ⊗ g,∆(GMα)〉hbeta

=
∑
β

〈f ⊗ g,∆(G)∆(Mα)〉hbeta

=
∑
β

∑
i

〈f ⊗ g, (G(i) ⊗G(i))∆(Mα)〉hbeta

=
∑
β

∑
i

〈G(i)⊥(f)⊗G⊥(i)(g),∆(Mα)〉hbeta

=
∑
β

∑
i

〈G(i)⊥(f)G⊥(i)(g),Mα〉hbeta

=
∑
i

G(i)⊥(f)G⊥(i)(g)

�

A special case of Proposition 2 is ∆(Mn) = Mn ⊗ 1 + 1 ⊗Mn. Therefore we have as a
corollary
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Corollary 4. Using the notation [A,B] = AB −BA,

[M⊥n ,
Lf ] = L(M⊥n f) .

Proof. Proposition 3 says that

M⊥n (fg) = M⊥n (f)g + fM⊥n (g) .

Cast in terms of operators this says

M⊥n (Lf(g))− Lf(M⊥n (g)) = L(M⊥n (f))(g) .

In terms of the bracket notation, this equation can be written as

[M⊥n ,
Lf ](g) = L(M⊥n (f))(g) .

�

Since the elements Mn do not generate QSym, this isn’t enough to generate the algebra.
In fact, we need to know the commutation of Mα for any composition α. What we will do is
give the commutation with those elements with a set of generators of NSym. Technically,
we only need to know how the M⊥α commute for the generators of the algebra (those
indexed by the Lyndon compositions), but the formula we will present here indicates the
properties of the indexing composition do not play a significant role in the formula.

Proposition 5.

[M⊥α ,
Lhn] = Lhn−α1M

⊥
(α2,α3,...,α`(α))

and

[M⊥α ,
Rhn] = Rhn−α`(α)M

⊥
(α1,α2,...,α`(α)−1)

In order to show this result we need to know the action of M⊥α on hn.

Lemma 6.

M⊥α (hn) =

{
0 if `(α) > 1

hn−r if α = (r)

with the convention that hn−r = 0 if r > n.

Proof.

M⊥α (hn) =
∑
β

〈hn,MαMβ〉hα

and since the terms of MαMβ are those in the quasi-shuffle of the compositions α and β,

and since if γ ∈ αt̃tβ then `(γ) ≥ max(`(α), `(β)), then it must be that the only terms
〈hn,MαMβ〉 that are non-zero are those where `(α) = `(β) = 1. If α = (r), then it must
be that β = (n− r) and

M⊥α (hn) = 〈hn,MrMn−r〉hn−r = 〈hn,M(r,n−r) +M(n−r,r) +Mn〉hn−r = hn−r.

�
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Proof. (of Proposition 5) Using Proposition 3, we have that

M⊥α
Lhn(g) = M⊥α (hng) =

∑
(β,γ)=α

M⊥β (hn)M⊥γ (g) .

Now by Lemma 6, the only terms that are non-zero in this sum are those where β = (),
γ = α and β = α1, γ = (α2, . . . , α`) and so this sum is equal to

M⊥α (Lhn(g)) = hnM
⊥
α (g) + hn−α1M

⊥
(α2,...,α`)

(g) = Lhn(M⊥α (g)) + Lhn−α1(M⊥(α2,...,α`)
(g))

Therefore,

[M⊥α ,
Lhn](g) = M⊥α (Lhn(g))− Lhn(M⊥α (g)) = Lhn−α1(M⊥(α2,...,α`)

(g)) .

The proof that [M⊥α ,
Rhn] = Rhn−α`(α)M

⊥
(α1,α2,...,α`(α)−1)

is similar and uses exactly the

same identities. �

If we consider the action of Lhn and Rhm on a basis of NSym, then we see that they
commute

Lhn(Rhm(hα)) = Lhn(h(α,m)) = h(n,α,m) = Rhm(Lhn(hα))

hence
[Lhn,

Rhm] = 0 .

Also, since QSym is commutative,

[M⊥α ,M
⊥
β ] = 0 .

I will not prove here, but the arguments are again analogous (and probably can be
derived from those above), that we have as elements of End(QSym),

[Lh⊥n ,Mα] = M(α2,α3,...,α`(α))
Lh⊥n−α1

[Rh⊥n ,Mα] = M(α1,α2,...,α`(α)−1)
Rh⊥n−α`(α)

[Lh⊥n ,
Rh⊥m] = 0

[Mα,Mβ] = 0


