
NOTES ON LANGUAGES

MIKE ZABROCKI

1. Introduction

The symbol Σ will represent an alphabet or a set of letters. ‘Languages’ are sets of words (i.e.
subsets of Σ∗ = {w1w2 · · ·wk|wi ∈ Σ}.

Let A be a language and set an = |{w|w ∈ A, |w| = n}|

The general question that we want to consider is “Under what conditions can we say something
about the sequence a0, a1, a2, . . .?”

If A is a language then set GA(q) =
∑

n≥0 anqn is the generating function for A.

Exercise 1. Find GA(q) and an where A is the language Σ∗ with |Σ| = n.

Is it always possible to give a formula for ak or GA(q)? Given a description of a language A is it
possible to find a formula for an or GA(q)? Can we at least compute an in a “reasonable” amount
of time for a given n?

2. Regular languages

Finite automata or Deterministic Finite Automata (DFA) - M = (Q,Σ, δ, q0, F) where

(1) Q - set of states
(2) Σ - alphabet
(3) δ : Q× Σ → Q - transition function
(4) q0 - start state (an element of Q)
(5) F - a subset of Q called the accept states (or final states)

Usually a finite state automata is represented as a graph. A start state is represented as

an accept state is indicated by
1

2 MIKE ZABROCKI

Example 2. Insert example of DFA here.

An example of a FA.

We say that M accepts w = w1 · · ·wn if there exists a sequence of states r0, r1, . . . , rn satisfying

(1) r0 = q0

(2) δ(ri, wi+1) = ri+1

(3) rn ∈ F .

The language that M recognizes is {w|M accepts w}.

The empty string is denoted by ε. Machines that have q0 ∈ F accept ε.

A language recognized by a finite automata is called regular.

Regular languages are closed under

• union - A ∪B
• concatenation - A ◦B = {wv|w ∈ A, v ∈ B}
• star - A∗ = {w(1) · · ·w(k) |w(i) ∈ A}
• intersection
• complementation
• set difference

Define an NFA (Non-deterministic Finite Automata) to be a finite automata where we relax the
condition that the transition function now

δ : Q× (Σ ∪ {ε}) → P(Q)

where P(Q) represents the power set of Q.

An NFA accepts a word w if there is a sequence of states r0, · · · , rm such that

(1) r0 = q0

(2) ri+1 ∈ δ(ri, wi+1) or ri+1 ∈ δ(ri, ε)
(3) rm ∈ F .

The language that an NFA accepts is {w|M accepts w}.

NOTES ON LANGUAGES 3

Exercise 3. Insert NFA here

Which of the following words are accepted by the NFA above?: ε, a, b, bb, baa, baba, abba, babba.

Looking at the conditions closely, one would assume that the class of languages which is accepted
by NFAs is larger than regular languages. It turns out that they are the same. That is,

Theorem 4. If A is a regular language, then A is accepted by an NFA. Conversely, if A is the
language that is accepted by an NFA then A is regular.

That is, for every NFA there is a DFA which accepts the same language. The proof of this theorem
is constructive in the sense it defines a method for converting an NFA to a DFA.

Exercise 5. Find a DFA which is equivalent to the NFA from the previous exercise.

Given this, it is easy to see why regular languages are closed under union, concatenation and star
operations.

Exercise 6. Give an outline of a proof that A ∪ B is regular given that A and B are regular by
defining an NFA which accepts A ∪B in terms of the DFA which accepts A and B.

Exercise 7. Give an outline of a proof that A ◦ B is regular given that A and B are regular by
defining an NFA which accepts A ◦B in terms of the DFA which accepts A and B.

Exercise 8. Give an outline of a proof that A∗ is regular given that A are regular by defining an
NFA which accepts A∗ in terms of the DFA which accepts A.

Regular languages are also represented by regular expressions.

Definition 9. An expression R is regular if it is

(1) ∅
(2) ε
(3) a ∈ Σ
(4) R1 ∪R2 or sometimes R1 + R2

(5) R1 ◦R2 or sometimes R1R2

(6) R∗1 where R1, R2 are themselves regular expressions.

Exercise 10. Find a regular expression which represents the DFA of example 2.

Exercise 11. Create a DFA which represents the language accepted by the following regular ex-
pression.

a∗ ∪ (a∗b(b ∪ a(aa∗b)∗b)a)∗

Of course, not all languages are regular.

4 MIKE ZABROCKI

C = {w|w has an equal number of 0s and 1s}
D = {w|w has an equal number of 01 and 10 substrings}

C is not regular, but D is!

Lemma 12. (The Pumping Lemma for regular languages) If A is regular, then there is a p ≥ 0
such that if w ∈ A and |w| ≥ p then w = xyz where

(1) xyiz ∈ A
(2) |y| > 0
(3) |xy| < p

If A does not have this property then A is not regular.

Exercise 13. Use the pumping lemma to show that C (given above) is not regular.

Exercise 14. Find a DFA which accepts the language of D.

Exercise 15. The following is a short list of examples of regular languages

(1) {w ∈ {0, 1}∗ |w has a single 1}
(2) {w ∈ {0, 1}∗ |w has a at least one 1}
(3) {w ∈ {0, 1}∗ |w contains 001 as a substring}
(4) {w ∈ Σ∗ | |w| = 2n, n ≥ 0}
(5) {w ∈ Σ∗ | |w| = 3n, n ≥ 0}
(6) {w ∈ Σ∗ | |w| ≤ 4}
(7) {w ∈ Σ∗ | |w| = 4}
(8) {w ∈ Σ∗ |w starts and ends with the same symbol}

Find a regular expression representing each of the languages above.

3. Context free languages

A context free grammar is a tuple G = (V,Σ, R, S) where

(1) V is a finite set of variables
(2) Σ is the alphabet, usually called terminals (Σ ∩ V = ∅)
(3) R a finite set of rules
(4) S a start symbol

A rule here is a variable and a string of variables and terminals (including the empty string ε).

We say that u yields w or u ⇒ w if u = xAy and w = xzy and A → z is a rule. we write u ∗
⇒w if

there is a sequence of ui such that u ⇒ u1 ⇒ u2 ⇒ · · · ⇒ w.

NOTES ON LANGUAGES 5

The language of the grammar is {w ∈ Σ∗|S ∗
⇒w}. A language is called context free if there is a

context free grammar which accepts the language.

A derivation of a string w in a grammar G is called a leftmost derivation if at each step the leftmost
remaining variable is the one replaced.

Example 16. If A = {0n1n : n ≥ 0} then a grammar which accepts A as the language is G =
({S}, {0, 1}, {S → 0S1 | ε}, S).

Example 17. If A = {0n1n : n ≥ 0} ∪ {1n0n : n ≥ 0} then a grammar which accepts A as the
language is G = ({S, S1, S2}, {0, 1}, R, S) where R is given as

S → S1 |S2

S1 → 0S11 | ε
S2 → 1S20 | ε

Exercise 18. Prove regular languages are context free.

Exercise 19. The following is a short list of languages which are context free but not regular. For
each give an unambiguous context free grammar which recognizes the language.

• {anbn : n ≥ 0}
• {w |w ∈ {a, b}∗, w is a palindrome}
• Dyck words - {w ∈ {(,)}∗ |w has balanced parentheses}.
• {w ∈ {0, 1}∗ | |w| = 2n + 1 and the middle symbol is 0}
• {w ∈ {0, 1}∗ |w contains the same number of 1s as 0s}
• {w ∈ {0, 1}∗ |w contains more 1s than 0s}
• {w ∈ {a, b}∗ |w 6= anbn}
• {w ∈ {a, b}∗ | |w|a = 2|w|b}

A grammar is ambiguous if there are two or more leftmost derivations of the same word.

Sometimes ambiguous grammars have an unambiguous counterpart which generates the same lan-
guage. Some context free languages only have ambiguous grammars and are called inherently
ambiguous.

Example 20. The following is a long list of languages which are context free but inherently am-
biguous (see [2]).

• {aibjck | i, j, k ≥ 0 and either i = j or j = k}
• {w |w ∈ {a, b, c}∗, |w|a = |w|b or |w|a = |w|c}
• {w |w ∈ {x, x̄, y, ȳ}∗, |w|x = |w|x̄ or |w|y = |w|ȳ}
• {w |w ∈ {a, b, c}∗, |w|a 6= |w|b or |w|a 6= |w|c}
• {w1w2 |w1, w2 ∈ {a, b}∗;w1 = rev(w1), w2 = rev(w2)}
• {anbv1a

nv2 |n ≥ 1, v1, v2 ∈ {a, b}∗}
• {an1ban2b · · · an2kb | (∀j, n2j = n2j−1) or (n1 = n2k and ∀j, n2j = n2j+1)}
• {an1ban2b · · · an2kb | (n1 = 1,∀j, n2j = 2n2j−1) or (∀j, n2j = 2n2j+1)}
• {an1ban2b · · · ankb | ∃j, nj 6= j}

6 MIKE ZABROCKI

• {an1ban2b · · · ankb | ∃j, nj < j}
• {an1ban2b · · · ankb | ∃j, nj > j}
• {an1ban2b · · · ankb | ∃j, nj = j}
• {an1ban2b · · · ankb | ∃j, nj 6= k}
• {an1ban2b · · · ankb | k ≥ 2,∃j, nj+1 6= nj}
• {an1ban2b · · · ankb | k ≥ 2,∃j, nj+1 6= 2nj}
• {ñ1ñ2 · · · ñk |n1 6= 1 or ∃j, nj+1 6= nj + 1} where ñi is the binary representation of the

non-negative integer ni in {0, 1}∗c where where the c is the end of word marker.
• {ucv1wv2 |u, v1, v2, w ∈ {a, b}∗, w = rev(u)}

Exercise 21. Given the grammar with rules

< EXPR >→< EXPR > + < EXPR > | < EXPR > × < EXPR > | (< EXPR >) | a | b,
give a word in this language which can be derived ambiguously.

Context free languages are close under

• union
• concatenation
• Kleene star

They are not closed under intersection or complementation. The intersection of a context free
language and a regular language is context free.

Lemma 22. (The pumping lemma for context free languages) if A is a context free language, then
there is a number p where, if s is any string in A of length at least p, then s may be divided into
five pieces s = uvxyz satisfying the conditions:

(1) for each i ≥ 0, uvixyiz ∈ A,
(2) |vy| > 0, and
(3) |vxy| ≤ p.

Exercise 23. Using the pumping lemma prove that the following languages are not context free.

• {anbncn |n ≥ 0}
• {0n1n0n1n |n ≥ 0}
• {0n102n103n |n ≥ 0}
• {w#x |w is a substring of x}

Exercise 24. Show that L1 = {aibick | i, k ≥ 0} is context free. Let L2 = {aibkck | i, k ≥ 0}. Show
that L1 ∩ L2 is not context free.

Context free grammars are equivalent to a class of automata called push-down automata (PDA).

A pushdown automata is a six-tuple (Q,Σ,Γ, δ, q0, F), where Q, Σ, Γ, and F are all finite sets, and

(1) Q is the set of states

NOTES ON LANGUAGES 7

(2) Σ is the input alphabet
(3) Γ is the stack alphabet
(4) δ : Q× (Σ ∪ ε)× (Γ ∪ ε) → P(Q× (Γ ∪ ε)) is the transition function,
(5) q0 ∈ Q is the start state
(6) F ⊆ Q is the set of accept states.

The language that the automata M = (Q,Σ,Γ, δ, q0, F) accepts is the set of words w = w1w2 · · ·wm

where each wi ∈ (Σ ∪ ε) and sequences r0, r1, . . . , rm ∈ Q and strings s0, s1, . . . , sm ∈ Γ∗ exist that
satisfies

(1) r0 = q0 and s0 = ε
(2) (ri+1, b) ∈ δ(ri, wi+1, a), where si = at and si+1 = bt for some a, b ∈ (Γ ∪ ε) and t ∈ Γ∗.
(3) rm ∈ F .

4. Indexed Languages

An indexed grammar is a five-tuple (V,Σ, I, R, S) where

(1) V is a set of variables
(2) Σ is the alphabet of terminals
(3) I is the index set (a finite alphabet)
(4) R is a set of rules of the form

(a) A → α with A ∈ V and α ∈ (V ∪ Σ)∗

(b) A → Bf with A,B ∈ V
(c) Af → α with f ∈ I and α ∈ (V ∪ Σ)∗

(5) S is the start symbol.

Let β and γ be in (V I∗ ∪ Σ)∗, δ ∈ I∗ and Xi ∈ V ∪ Σ. The productions of this grammar are

(1) A → X1X2 · · ·Xk is a production of type (1) then

βAδγ ⇒ βX1δ1X2δ2 · · ·Xkδkγ

where δi = δ if Xi ∈ V and δi = ε if Xi is in Σ.
(2) If A → Bf is a production of type (2) then βAδγ ⇒ βBfδγ.
(3) If Af → X1X2 · · ·Xk is a production of type (3), then

βAfδγ ⇒ βX1δ1X2δ2 · · ·Xkδkγ

(same convention for δi).

The language of the grammar is then {w |S ⇒ w and w ∈ Σ∗}.

Exercise 25. G = ({S, T, A,B,C}, {a, b, c}, {f, g}, R, S) where R consists of the following rules:

S → Tg

T → Tf

8 MIKE ZABROCKI

T → ABC

Af → aA

Bf → bB

Cf → cC

Ag → a

Bg → b

Cg → c

Show that a3b3c3 is a word in the language of this grammar and give a description of the language.

Context free languages are indexed because every context free grammar is an indexed grammar
without the indices.

Example 26. The following is a short list of languages which are indexed but are not context-free.

(1) {0n1n2n |n ≥ 1}
(2) {0n2 |n ≥ 1}
(3) {0n |n is composite}
(4) {02n |n ≥ 1}
(5) {ww |w ∈ {0, 1}∗}
(6) {aibajb · · · akb | i ≥ j ≥ · · · ≥ k}
(7) {anbn2 |n ≥ 1}

Exercise 27. Give grammars for each of the languages in the previous example.

Exercise 28. Using the pumping lemma for context-free languages, show that each of the languages
in the previous example are not context-free.

Indexed languages are computationally equivalent to a machine called a nested stack automata
(NSA). When the NSA is in ‘read mode’ in the stack it has the ability of creating a new stack.
This new stack must be destroyed before any more of the previous stack can be read. This process
of creating a new stack can be repeated and it allows the creation of new stacks to an arbitrary
depth.

References

[1] A. Aho, Indexed Grammars– An Extension of Context Free Grammars, Journal of the Association for Computing
Machinery, Vol. 15, No. 4, (1968), 647–671.

[2] P. Flajolet, Analytic Models and Ambiguity of Context-Free Languages, Theoretical Computer Science, 49
(1987), 283-309.

[3] J. Hopcroft and J. Ullman. Introduction to automata theory, languages, and computation. Addison-Wesley
Publishing Co., Reading, Mass., 1979. Addison-Wesley Series in Computer Science.

[4] M. Sipser, Introduction to the Theory of Computation, PWS Publishing Company, 1997.

