
Formal Power Series and Algebraic Combinatorics
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Schubert polynomials for the affine Grassmannian
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Abstract. Confirming a conjecture of Mark Shimozono, we identify polynomial representatives for the
Schubert classes of the affine Grassmannian as the k-Schur functions in homology and affine Schur functions
in cohomology. Our results rely on Kostant and Kumar’s nilHecke ring, work of Peterson on the homology
of based loops on a compact group, and earlier work of ours on non-commutative k-Schur functions.

Résumé. Nous prouvons une conjecture de Mark Shimozono en montrant que des representations polyno-
miales pour les classes de Schubert des Grassmanniennes affines sont des fonctions k-Schur en homologie,
et des fonctions de Schur affines en cohomologie. Nous utilisons l’anneau nilHecke de Kostant et Kumar, le
travail de Peterson sur l’homologie des circuits basés sur un groupe compact, et notre travail antérieur sur
les fonctions de k-Schur non-commutatives.

1. Introduction

This article is an extended abstract of the paper [11] with the same title. Some results and many details
have been omitted.

In [3], Bott calculated the homology and cohomology rings of the based loop spaces ΩK, where K is a
compact Lie group. In type A, both H∗(ΩSUn) and H∗(ΩSUn) can be identified with a ring of symmetric
functions: in cohomology as a quotient of the ring of symmetric functions and in homology as a subring of
the ring of symmetric functions. Separately, Kostant and Kumar [8] have calculated the cohomology rings
H∗(G/P) of homogeneous spaces of Kac-Moody groups in terms of the Schubert classes σw ∈ H∗(G/P). It
is well known that when G is of affine type and P a maximal parabolic, then G/P is homotopy-equivalent

to the based loops on the finite-dimensional compact group associated to G. Thus in type Ân−1, we have
H∗(G/P) = H∗(ΩSU(n)). While some of our results generalize to all Dynkin types, we will restrict ourselves
to type A for the remainder of this article.

Our main result is the identification of the Schubert classes σw ∈ H∗(G/P) and σw ∈ H∗(G/P) as explicit
symmetric functions. In the homology case, these polynomials are known as the k-Schur functions, originally
introduced by Lapointe, Lascoux and Morse [16] and studied thoroughly by Lapointe and Morse [13, 14].
In the cohomology case, these polynomials were introduced by Lapointe and Morse in [15] where they were
called dual k-Schur functions and also studied by myself in [10] where they were called affine Schur functions.
These results were conjectures of Mark Shimozono (in the cohomology case, the conjecture was made precise
by Jennifer Morse).

Thus the k-Schur functions s
(k)
λ (x) and the affine Schur functions F̃λ(x) can be considered affine homology

and cohomology Schubert polynomials respectively. Schubert polynomials for the flag variety were intro-
duced by Lascoux and Schützenberger [17] and has led to numerous developments in algebra, geometry and
combinatorics. It should be expected that affine Schubert polynomials lead to many exciting developments as
well. Note that since ΩSU(n) is a loop space, its homology H∗(ΩSU(n)) = H∗(G/P) is a Hopf-algebra. Our
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identification of Schubert classes is actually an isomorphism of Hopf-algebras, and gives an interpretation of
the Hall inner product as the natural pairing between homology and cohomology. This feature of the affine
theory is lacking in the classical finite case. We will only briefly discuss the Hopf-structures in this article.

Our results rely heavily on the nilHecke ring A introduced by Kostant and Kumar [8], results of Peter-
son [19] on the homology of based loop spaces, and the non-commutative k-Schur functions by the author

in [10]. The non-commutative k-Schur functions are elements s
(k)
w of a commutative subalgebra B ⊂ A,

which we call the affine Fomin-Stanley algebra (since it is closely related to the work in [6]), of the nilHecke
ring. We showed in [10] that B was isomorphic to a subring of the ring of symmetric functions which can be
identified via Bott’s result with H∗(G/P). Peterson has constructed an isomorphism j : HT

∗ (G/P) → ZA(S)
of the equivariant homology HT

∗ (G/P) with a certain centraliser subalgebra ZA(S) ⊂ A of the nilHecke
ring. We show here that “evaluation at 0” takes ZA(S) onto B and that the composition with Peterson’s j-

homomorphism takes the Schubert classes σ(w) to the non-commutative k-Schur functions s
(k)
w . Kostant and

Kumar have calculated the structure constants of H∗(G/P) in terms of a coproduct ∆ on A and we compute
directly that this coproduct, when restricted to the subalgebra B, agrees with the usual coproduct of the
symmetric functions. This shows that B, when viewed as a ring of symmetric functions, is Hopf-isomorphic
to H∗(G/P).

There are many open problems related to this work, and we mention a couple: it is natural to ask for
representatives in K-theory, in equivariant (co)homology and in quantum cohomology. It is also natural to
ask to generalize our work from the affine Grassmannian G/P to the affine flag variety G/B and to generalize
from type A to all Weyl types. Together with Luc Lapointe, Jennifer Morse and Mark Shimozono, we have
been developing an affine version of Schensted insertion and an affine Pieri rule [12].

2. Equivariant homology and cohomology of G/P

Let G be the affine Kac-Moody Group of type Ân−1 over C and let T be a Cartan subgroup of G.
Let B be a Borel subgroup of G. Let P be a parabolic subgroup of G. The homogeneous space G/P is
not a finite dimensional variety but an ind-variety (see [9]). The group G possesses a Bruhat decomposi-
tion G =

⋃

w∈W BwB where W denotes the affine symmetric group. The Bruhat decomposition induces a
decomposition of G/P into Schubert cells:

G/P =
⋃

w∈W P

Xw

where P is the parabolic subgroup of W associated to P and WP denotes the elements of shortest length
in W/P (see [7]). The Schubert classes σw = [Xw] representing Xw in H∗(G/P) form a basis of the homol-
ogy. We will denote the Schubert classes in homology, cohomology, equivariant homology and equivariant
cohomology as follows

σw ∈ H∗(G/P) , σw ∈ H∗(G/P) , σ(w) ∈ HT
∗ (G/P) , σ(w) ∈ H∗

T (G/P).

Throughout this paper, all homology and cohomology rings will be with Z-coefficients.
From now on we shall assume that P is a maximal parabolic subgroup. The corresponding parabolic

subgroup W0 ⊂ W is the usual symmetric group Sn and we denote the minimal-length representatives of
W/W0 by W 0. We call the elements of W 0 Grassmannian elements. The homogeneous space G/B is known
as the affine flag variety and G/P is known as the affine Grassmannian. The isomorphism type of G/P does
not depend on the choice of maximal parabolic P . It is in fact homeomorphic to GLn(K)/GLn(O) where
K = C((t)) denotes the field of Laurent series and O = C[[t]] denotes the subring of power series.

A special feature of G/P is that it is a group as follows. Let K = Un ⊂ GLn be the compact group of
type An−1. Then it is well known that G/P is homotopy equivalent to (the identity component of) ΩK, the
space of based loops into K. The group structure of ΩK induces a multiplication on (equivariant) homology,
so that H∗(G/P) and H∗(G/P) are dual Hopf-algebras. Thus one can sensibly ask for homology Schubert
polynomials representing the Schubert classes σw ∈ H∗(G/P). This is a feature not present in classical
Schubert calculus.

The homology and cohomology rings (and their Hopf-algebra structures) of ΩK were earlier computed
by Bott.
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Theorem 2.1 ([3]). We have the isomorphisms

H∗(G/P) = Z[σ1, σ2, . . . , σn−1]

and

H∗(G/P) = SH∗(CP
n−1)

where S denotes an infinite symmetric power.

These rings can be identified respectively with a subring and a quotient ring of the ring of symmetric
functions. The aim of this paper is thus to identify the Schubert classes σw ∈ H∗(G/P) and σw ∈ H∗(G/P)
as explicit symmetric functions.

3. NilHecke Ring

Let {ri | i ∈ Z/nZ} denote the simple generators of W and let {αi | i ∈ Z/nZ} denote the simple roots

of the root system of type Ân−1 and for a real root α we let α∨ denote the corresponding coroot. For each
root α, we denote the corresponding reflection by rα. Let h∗

Z
denote the Z-span of the fundamental weights,

and let S = Sym(h∗
Z
) denote the ring of polynomials in the weights so that S = H∗

T (point).

Let A denote the affine nilHecke ring of type Ân−1 (see [8]). (Note that Kostant and Kumar define A

over the rationals, but we have found it more convenient, following Peterson [19], to work over Z.) It is the
ring with a 1 given by generators {Ai | i ∈ Z/nZ} ∪ {λ | λ ∈ h∗

Z
} and the relations

Ai λ = (ri · λ)Ai + 〈λ, α∨
i 〉 · 1 for λ ∈ h∗

Z

Ai Ai = 0

Ai Aj = Aj Ai if |i− j| ≥ 2

Ai Ai+1 Ai = AiAi+1 Ai.

The ring A acts as generalized BGG-Demazure operators on H∗
T (X) for any LK-space X (here LK is

the space of all loops into the unitary group Un). The element Ai corresponds to the map H∗
T (G/B) →

H∗−2
T (G/B) obtained by integration along the fibers of the P1-fibration G/B → G/Pi where Pi are the

minimal parabolic subgroups. In fact Peterson [19] has shown that A is exactly the ring of “compact
characteristic operators”; see also [9]. Combinatorially, in the classical case the elements Ai act as divided
difference operators on the Schubert polynomials.

Let w ∈ W and let w = si1 · · · sil
be a reduced decomposition of w. Then Aw := Ai1 · · ·Ail

is a well
defined element of A. We let A0 := 1. By [8] or [19, Proposition 2-7], {Aw | w ∈ W} is an S-basis of A. We
will also identify ri with the element 1 − αiAi ∈ A and abusing notation, we write w ∈ A for the element in
the nilHecke ring corresponding to w ∈W .

Let A0 ⊂ A denote the subring over Z of A generated by the Ai only. I called this the affine nilCoxeter
algebra in [10]. There is a specialization map φ0 : A → A0 given by

φ0 :
∑

w

awAw 7−→
∑

w

φ0(aw)Aw

where φ0 evaluates a polynomial s ∈ S by setting all αi to 0.
For later use, we note the following straightforward result, whose proof we omit; see [8, Proposition

4.30].

Lemma 3.1. Let w ∈W and λ ∈ S be of degree 1. Then

Awλ = (w · λ)Aw +
∑

rαwlw

〈λ, α∨〉Arαw.

Here l denotes a cover in strong Bruhat order.

The coefficients 〈λ, α∨〉 are known as Chevalley coefficients.
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4. The coproduct on A

Define the coproduct map ∆ : A → A ⊗S A by

∆(s) = 1 ⊗ s = s⊗ 1 for s ∈ S

∆(Ai) = Ai ⊗ 1 + ri ⊗Ai = 1 ⊗Ai +Ai ⊗ ri

= Ai ⊗ 1 + 1 ⊗Ai −Ai ⊗ αiAi.

This is a well defined map, which in addition is cocommutative. One can deduce from these relations that
∆(w) = w ⊗ w. (In the original work of [8], this last relation was used to define ∆, but we shall follow the
set up of [19]).

One should be careful since the tensor product A ⊗S A is not a ring. For example,

(Ai ⊗ 1).(1 ⊗ αi) 6= (Ai ⊗ 1).(αi ⊗ 1)

However, it is shown in [19] that the action of A on A ⊗S A given by the above formulae still give a well
defined action of A on A ⊗S A. That is, ∆(a) = a · (1 ⊗ 1) for any a ∈ A.

Note that φ0 also sends A⊗S A to A0 ⊗Z A0 by evaluating the coefficients at 0 when writing in the basis
{Aw ⊗Av}w,v∈W .

Theorem 4.1 ([8]). Let

∆(Aw) =
∑

u,v∈W

au,v
w Au ⊗Av.

Then au,v
w are the (Schubert) structure constants of H∗

T (G/B), so that

σ(u) · σ(v) =
∑

w∈W

au,v
w σ(w).

Theorem 4.1 is in fact valid for all symmetrizable Kac-Moody groups. Since the product of two Grass-
mannian classes σ(u) and σ(v) (where u, v ∈W 0) in HT (G/P) is Grassmannian, we have the following simple
result.

Lemma 4.2. If w /∈W 0 and u, v ∈W 0 then au,v
w = 0.

5. Symmetric functions

We refer to [18] for details concerning the material of this section. Let Λ = ΛZ denote the ring of
symmetric functions over Z in infinitely many variables x1, x2, . . .. We write hi(x) for the homogeneous
symmetric functions and for a partition λ = (λ1 ≥ λ2 ≥ · · · ), we write hλ(x) = hλ1(x)hλ2(x) · · · . The elements
h1(x), h2(x), . . . ∈ Λ form a set of algebraically independent set of generators of Λ. We let mλ(x) ∈ Λ denote
the monomial symmetric functions. They form a basis of the ring of symmetric functions over the integers.

Let Λn ⊂ Λ denote the subring of the symmetric functions generated by hi(x) for i ∈ [0, n − 1]. Let
Λn denote the quotient of Λ given by Λn = Λ/〈mλ(x) | λ1 ≥ n〉. Clearly the set {mλ(x) | λ1 < n} forms a
basis of Λn. When giving an element f̄ ∈ Λn we will usually just give a representative f ∈ Λ without further
comment.

The Hall inner product, denoted 〈., .〉 : Λ × Λ → Z, is a symmetric non-degenerate pairing defined by
〈hλ(x),mµ(x)〉 = δλµ. It induces a non-degenerate pairing 〈., .〉 : Λn × Λn → Z.

It is not too difficult to see from Theorem 2.1 that Λn
∼= H∗(G/P) and Λn ∼= H∗(G/P).

In fact the ring of symmetric functions Λ is a Hopf algebra with coproduct given by ∆(hi(x)) =
∑

j≤i hj(x) ⊗ hi(x). This Hopf-algebra structure gives Λn and Λn the structures of dual Hopf algebras.

6. Affine Schur functions and k-Schur functions

An integral orthonormal basis of Λ is given by the set of Schur functions sλ(x). We will be concerned

with a set of dual bases {s
(k)
λ (x)} of Λn and {Fλ(x)} of Λn called respectively the k-Schur functions, and

affine Schur functions or dual k-Schur functions. The k-Schur functions {s
(k)
λ (x)} were introduced in [16],

and were further studied in [13, 14]. We will give a quick “dual” definition of these functions.
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Definition 6.1. Let a = a1a2 · · · ak be a word with letters from Z/nZ so that ai 6= aj for i 6= j. Let
A = {a1, a2, . . . , ak} ⊂ [0, n− 1]. The word a is cyclically decreasing if for every i such that i, i+ 1 ∈ A, the
letter i + 1 precedes i in a. A permutation w is cyclically decreasing if w = sa1

· · · sak
for some cyclically

decreasing sequence a1a2 · · · ak.

Now define, following [10], the elements hi ∈ A0 ⊂ A : i ∈ [0, n− 1] by the formula

hi =
∑

w

Aw

where the sum is over cyclically decreasing permutations w with length l(w) = i. If I ⊂ [0, n− 1] and w be
the corresponding cyclically decreasing permutation. Then we will write AI for Aw.

Let B denote the subalgebra of A0 ⊂ A generated by the hi for i ∈ [0, n − 1], which we call the affine
Fomin-Stanley subalgebra.

Theorem 6.2 ([10]). The algebra B is commutative. It is isomorphic to the subalgebra Λn of the
symmetric functions generated by the homogeneous symmetric functions hi(x) for i ∈ [0, n − 1], under the
map ψ : hi(x) 7→ hi.

Let 〈., .〉 : A0 × A0 → Z denote the bilinear pairing defined by 〈Aw, Av〉 = δwv.

Definition 6.3 ([10]). Let w ∈ W . Define the affine Stanley symmetric functions F̃w(x) ∈ Λ by

F̃w(x) =
∑

a=(a1,a2,...,at)

〈

hat
hat−1

· · ·ha1
· 1, Aw

〉

xa1

1 x
a2

2 · · ·xat

t ,

where the sum is over compositions of l(w) satisfying ai ∈ [0, n− 1].

The (image in Λn of the) set {F̃w(x) | w ∈W 0} forms a basis of Λn (see [10]). We called these functions
affine Schur functions in [10]. They were earlier introduced in a different manner in [15], where they were

called dual k-Schur functions. The k-Schur functions {s
(k)
w (x) | w ∈ W 0} are the dual basis of Λn to the

affine Schur functions under the Hall inner product. There is a bijection w ↔ λ(w) from Grassmannian
permutations {w ∈ W 0} to partitions {λ | λ1 < n} obtained by taking the code of the permutation; see [2].

We make the identifications F̃w(x) = F̃λ(w)(x) and s
(k)
w (x) = s

(k)
λ(w)(x) under this bijection. Note that in the

terminology of [16], k = n− 1.

7. Non-commutative k-Schurs

Recall that we have an isomorphism ψ : Λn → B. Define ∆B : B → B ⊗Z B by

∆B(hi) =
∑

j≤i

hj ⊗ hi−j

and extending ∆B to a ring homomorphism. This is just the natural coproduct of the symmetric functions
as explained in Section 5. The following definition is inspired by work of Fomin and Greene [5].

Definition 7.1. Let w ∈W 0. The non-commutative k-Schur functions are given by

s(k)
w := ψ(s(k)

w (x)) ∈ B.

The main result we need concerning the non-commutative k-Schur functions is the following.

Theorem 7.2 ([10]). The non-commutative k-Schurs can be written in the Aw basis as

s(k)
w = Aw +

∑

v/∈W 0

bw,vAv

where w is a Grassmannian permutation and the second term is a summation over non-Grassmannian
permutations.
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8. The Main Theorem

Our main theorem is the following.

Theorem 8.1. The map θ : H∗(G/P) → Λn given by

θ : σw 7−→ s(k)
w (x)

is an isomorphism of Hopf-algebras. The map θ′ : H∗(G/P) → Λn given by

θ′ : σw 7−→ F̃w(x)

is an isomorphism of Hopf-algebras.

In the homology case, this theorem was a conjecture of Mark Shimozono. The conjecture in the coho-
mology case was made precise by Jennifer Morse.

We shall prove the following technical result in Section 13.

Theorem 8.2. The two coproducts ∆,∆B agree on B up to specialisation at 0:

φ0 ◦ ∆ = ∆B.

The following theorem proves half of Theorem 8.1. Recall that au,v
w are the multiplicative structure

constants of H∗(G/P).

Theorem 8.3. We have

φ0(∆(s(k)
w )) =

∑

u,v∈W 0 : l(u)+l(v)=l(w)

au,v
w s(k)

u ⊗ s(k)
v .

Note that since the k-Schur functions s
(k)
w (x) are Hall-dual to the affine Schur functions F̃w(x), The-

orem 8.3 immediately implies that multiplication of F̃w(x) in Λn agrees with the multiplication of σw in
H∗(G/P). See also the discussion in [10].

Proof. By Theorems 4.1 and 7.2, we have

∆(s(k)
w ) = ∆(Aw +

∑

v

bw,vAv)

=
∑

u,v

au,x
w Au ⊗Ax +

∑

v

bw,v

∑

y,z

ay,z
v Ay ⊗Az

The polynomials au,x
w are known to have (homogeneous) degree l(u) + l(x) − l(w), so we get

φ0(∆(s(k)
w )) =

∑

u,x

l(u)+l(x)=l(w)

au,x
w Au ⊗Ax +

∑

v

bw,v

∑

y,z

l(y)+l(z)=l(v)

ay,z
v Ay ⊗Az .

By Lemma 4.2, we may actually write

(8.1) φ0(∆(s(k)
w )) =

∑

u,v∈W 0:l(u)+l(v)=l(w)

au,x
w Au ⊗Ax + other terms.

The other terms involve Ay ⊗Az where one of y or z is not Grassmannian.

Now by Theorem 8.2, we have φ0(∆(s
(k)
w )) ∈ B ⊗Z B so we may write it as

φ0(∆(s(k)
w )) =

∑

u,x∈W 0

cu,x
w s(k)

u ⊗ s(k)
x

where cu,x
w are some integers. Using Theorem 7.2 again, we have

φ0(∆(s(k)
w )) =

∑

u,x∈W 0

cu,x
w Au ⊗Ax + other terms,

where as before the other terms involve the basis elements Ay ⊗Az where one of y or z is not Grassmannian.
Comparing with (8.1) we have cu,x

w = au,x
w , as required. �
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9. B nearly annihilates S

To prove Theorem 8.2, and also to obtain the multiplicative constants of the homology H∗(G/P) we first
prove a technical property of the Fomin-Stanley subalgebra B.

Theorem 9.1. Let b ∈ B and s ∈ S. Then

φ0(bs) = φ0(s)b.

Proof. We show that φ0(hi · αj) = 0 for each i and the theorem follows since hi generate B. Without
loss of generality we will assume that j = 1. Let I ⊂ Z/nZ be of size i. We calculate φ0(AIα1) explicitly.
In the following [2, r] is the largest interval of its form (possibly empty) contained in I which contains 2. It
is possible that [2, r] contains 0 but it cannot contain 1 (since then it will have size n). Also the subset I ′

never contains any of 0, 1, 2. The sums over a are always over a ∈ [2, r]. The (A),(B),(C) are for marking the
terms only, for later use.

I φ0(AIα1)
I ′ ∪ [2, r] −

∑

aAI−{a}(A)
I ′ ∪ [2, r] ∪ {1} 2AI−{1}(A) +

∑

aAI−{a}(C)
I ′ ∪ [2, r] ∪ {0} −AI−{0}(A) −

∑

aAI−{a}(B)
I ′ ∪ [2, r] ∪ {0, 1} −AI−{0}(C) +AI−{1}(B)

For example

A[2,r]A1A0α1

= A[2,r]A1((α1 + α0)A0 − 1)

= −A[2,r]A1 +A[2,r](−α1A1A0 + 2A0 + (α1 + α0)A1A0 −A0)

= −A[2,r]−{0} +A[2,r]−{1} + α0A[2,r]A1A0.

The At factors for t ∈ I ′ always commute in these calculations.
One observes that the terms marked (A) or (B) or (C) when grouped together cancel out. We have: (A)

corresponds to subsets J of size i− 1 such that J contains neither 1 nor 0; and (B) corresponds to subsets
J of size i− 1 such that J contains 0 but not 1; and (C) corresponds to subsets J of size i− 1 such that J
contains 1 but not 0. Every such subset in say case (A) will appear in all 3 case (A) terms. No other subsets
(those containing both 0 and 1) appear in the sum

∑

I AIα1.
For example, the subset J = [2, 4] ∪ [5, 7] will appear in φ0(AIα1) for I = [2, 7] or [1, 4] ∪ [5, 7] or

{0} ∪ [2, 4] ∪ [5, 7]. The multiplicities will be −1, 2, and −1 respectively, which cancel out.
�

10. An identity for finite Weyl groups

Let W fin be a finite Weyl group and H∗(K/T ) be the cohomology of the corresponding flag variety. Also
let w◦ denote the longest element of W fin.

Proposition 10.1. Suppose that for some coefficients {bu ∈ Z}u∈W fin the following identity holds in
ZW fin for all integral weights λ ∈ h∗

Z
∑

u∈W fin; l(u)>0

bu
∑

urαlu

〈λ, α∨〉urα = 0.

Then bu = 0 for all u.

Proof. First apply the transformation u 7→ w◦u to the identity of the Proposition. Then reindexing
the bu, we obtain

∑

u∈W fin; u6=w◦

bu
∑

urαmu

〈λ, α∨〉urα = 0

for all λ.
Let σ

(0)
u ∈ H∗(K/T ) denote the Schubert classes in the finite flag variety. By the Chevalley-Monk

formula [1] we have

[λ] · σ(0)
u =

∑

urαmu

〈λ, α∨〉σ(0)
urα
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where [λ] ∈ H∗(K/T ) denotes the image of λ under the characteristic homomorphism S(h∗
Z
) → H∗(K/T ).

For example, if λ = ωi is a fundamental weight then [ωi] = σ
(0)
si . It is well known that σ

(0)
s1
, σ

(0)
s2
, . . . , σ

(0)
sn−1

generate H∗(K/T ) or alternatively that the characteristic homomorphism is surjective.
Suppose that [λ] · σ = 0 for some σ ∈ H∗(K/T ) and all λ ∈ h∗

Z
. If l(v) + l(u) = l(w◦) we have

σ
(0)
v · σ

(0)
u = δv,w◦uσ

(0)
w◦

. Since σ
(0)
u · σ = 0 for all u 6= id, we find that σ must be a multiple of the class σ

(0)
w◦

.

Letting σ =
∑

u buσ
(0)
u and applying the Chevalley-Monk formula we obtain the proposition. �

11. The subalgebra B′

Define a subalgebra B′ ⊂ A0 as follows:

B
′ = {a ∈ A0 | φ0(as) = φ0(s)a for all s ∈ S}.

Thus Theorem 9.1 says that B ⊂ B′. It turns out that B′ is always a commutative subalgebra for all
affine types, though we will not need such generality here.

Proposition 11.1. Let b 6= 0 ∈ B′ and write b =
∑

w bwAw with bw ∈ Z. Then bw 6= 0 for some
w ∈W 0.

Proof. Let D = {w ∈ W | bw 6= 0}. For each w ∈W we may uniquely write w = xwyw where xw ∈ W 0

and yw ∈W0. Let d = {min(l(yw)) | w ∈ D}. We write l0(w) := l(yw).
Suppose d 6= 0 and let w ∈ D minimize l0(w). Let λ ∈ S be of degree 1. Then by Lemma 3.1,

φ0(Awλ) =
∑

wrαlw 〈λ, α∨〉Awrα
. We know that w m v if and only if a reduced decomposition of v is

obtained from a reduced decomposition of w by removing a simple generator. Since w = xwyw, each such
v satisfies l0(v) ≥ l0(w) − 1. Let Dw = {v l w | l0(v) = l0(w) − 1}. Then v ∈ Dw if and only if v = xvyv

where xv = xw and yv l yw.
Now write φ0(bλ) =

∑

v b
′
vAv and focus only on the coefficients of b′v satisfying l0(v) = d−1 and v = xyv

for some fixed x ∈ W 0. If b ∈ B′ then b′v = 0. Thus in particular, for every λ ∈ S of degree 1, we have
∑

u∈W0

bxu

∑

urαlu

〈λ, α∨〉AxAurα
= 0.

Factorizing Ax to the front, we see that this is impossible by Proposition 10.1. Since this is true for all
x ∈W 0 we conclude that we must have d = 0. �

12. Peterson’s j-homomorphism

To further understand the non-commutative k-Schur functions, we require a result of Peterson. Let
ZA(S) denote the centralizer of S in A.

Theorem 12.1 ([19]). There is an isomorphism j : HT
∗ (ΩK) → ZA(S) such that

j(σ(x)) = Ax mod I

where x is a Grassmannian permutation and

I =
∑

w∈W0 ; w 6=id

A ·Aw.

Recall that W0 = Sn is the usual symmetric group.

Theorem 12.2. We have φ0(ZA(S)) = B′. More precisely, {φ0(j(σ(u))) | u ∈ W 0} forms a basis of B′

over Z.

Proof. The fact that φ0(ZA(S)) ⊂ B′ is a trivial calculation. Now let b ∈ B′. By Proposition 11.1
it contains a Grassmannian term Au with non-zero coefficient bu. By Theorem 12.1, b − buφ0(j(σ(u))) has
strictly fewer Grassmannian terms and also lies in B′. Repeating, we see that one can write b uniquely as a
Z-linear combination of the elements φ0(j(σ(u))). �

Corollary 12.3. The two algebras B and B′ are identical (as subalgebras of A0) and we have

φ0(j(σ(u))) = s(k)
u .
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Proof. This follows immediately from Theorems 12.2 and 7.2 together with Proposition 11.1: both

φ0(j(σ(u))) and s
(k)
u lie in B′ and have a unique Grassmannian term Au. �

Finally, we can complete the proof of our main theorem.

Proof of Theorem 8.1. Let x, y ∈ W 0. If σ(x)σ(y) =
∑

z∈W 0 czx,yσ(z) in HT (G/P) then σxσy =
∑

z∈W 0 φ0(c
z
x,y)σz in H∗(G/P). Thus B = B′ is isomorphic to H∗(G/P) and we have

s(k)
x s(k)

y =
∑

z∈W 0

φ0(c
z
x,y)s(k)

z .

This, together with Theorem 8.3 shows that θ and θ′ are both algebra and co-algebra homomorphisms. The
agreement of the remainder of the Hopf algebra structures is straightforward to verify. �

13. Proof of Theorem 8.2

We now return to the proof of Theorem 8.2. It will follow quickly from the following computation.

Proposition 13.1. We have

φ0(∆(hi)) =
∑

j

hj ⊗ hi−j

Proof. Let βi = −αi be the negative simple roots. We use ∆(Ai) = Ai ⊗ 1 + 1 ⊗Ai +Ai ⊗ βiAi.
Let i1, i2, . . . , il be a cyclically decreasing sequence. Thus

∆(Ai1Ai2 · · ·Ail
) =

∏

j ∆(Aij
)

= (Ai1 ⊗ 1 + 1 ⊗Ai1 +Ai1 ⊗ βi1Ai1 ) · · · (Ail
⊗ 1 + 1 ⊗Ail

+Ail
⊗ βil

Ail
)

Let us expand the product, by picking one of the three terms in each parentheses. (Strictly speaking we
cannot multiply within A ⊗S A, instead we are calculating the action of A on A ⊗S A via the coproduct:
∆(Ai) · (∆(Aj) · (1 ⊗ 1)) = ∆(AiAj)).

Because of the cyclically decreasing assumption, the only times we encounter a factor looking like Aia
βib

(where a < b) we have either

(13.1) Aia
βib

= βib
Aia

or we will have a = b− 1 and ia+1 = ia − 1 and

(13.2) Aia
βia−1 = (βia−1 + βia

)Aia
+ 1.

If (13.1) ever occurs, then βib
commutes with all Aic

where c < b and we may ignore the term since eventually
we will apply φ0. Similarly, if (13.2) occurs, the contribution of the term involving βia−1 is 0 after applying
φ0.

Also we perform the calculation

(13.3) Ai+1(βi)
m = βm

i+1Ai+1 + βm−1
i+1 + other terms,

where the other terms involve βi on the left somewhere (and would be killed by φ0 later).
Let B and C be two subsets of [0, n− 1] with total size equal to k ≤ n− 1. We will first describe how to

obtain the term AB ⊗AC (which occurs in h|B| ⊗ h|C|) from ∆(hk). Define a sequence of integers (“current
degree”) (cd(i) : i ∈ Z/nZ) by cd(i) = maxt{|I ∩ [i − t, i]| + |J ∩ [i− t, i]| − t− 1}. Since |B| + |C| < n we
can find i so that cd(i) = 0 and i /∈ B ∪C.

We may assume that i = 0. Let B = (b1 > · · · > bg) and C = (c1 > · · · > ch). Define a sequence
(t1, t2, . . . , tn−1) ∈ {L,R,B,E}n−1 as follows (E = empty, L = left, R = right and B = both):

ti =



















E if cd(i) = 0 and E /∈ B ∪ C

L if cd(i) = 0 and E ∈ B but E /∈ C

R if E /∈ B and (cd(i) > 0 or E ∈ C)

B otherwise.

Now let I = {i ∈ [1, n− 1] | t 6= E} ⊂ [1, n− 1]. Then AB ⊗AC is obtained from ∆(AI) by picking the term
Ais

⊗ 1 if tis
= L, the term 1 ⊗Ais

if tis
= R and Ais

⊗ βis
Ais

if tis
= B.
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The sequence of integers (cd(i)) tells us the current degree (in the second factor of the tensor product)
in S of the term that we want to pick whenever we encounter the situation of (13.3).

For example if cd(t) = 3 and cd(t + 1) = 3 then t + 1 ∈ B or t + 1 ∈ C. In the first case we will have
(At+1 ⊗ 1) · (a ⊗ β3

i b), for some a and b not involving S, and there is no further choice. In the second case
we get

(1 ⊗At+1) · (a⊗ β3
i b) = a⊗ (β3

i+1At+1 + β2
i+1)b,

modulo terms involving βi on the right. One must make a further choice between β3
i+1At+1 and β2

i+1. We
pick the first term since we want t+ 1 ∈ C and this agrees with the degree being cd(t+ 1) = 3.

Thus every term of the form AB ⊗ AC appears in the expansion of φ0(∆(hi)). Conversely, one can
reverse the description given above to see that every term in the expansion is indeed of that form. �

Proof of Theorem 8.2. From Proposition 13.1, we have ∆B(hi) = φ0(∆(hi)). Now let a ∈ B and b ∈
B and suppose we have shown that ∆B(a) = φ0(∆(a)) and ∆B(b) = φ0(∆(b)). Let ∆(a) =

∑

w,v Aw⊗aw,vAv

and ∆(b) =
∑

x,y Ax ⊗ bx,yAy, where aw,v, bx,y ∈ S. Then

φ0(∆(ab)) = φ0(∆(a)∆(b))

= φ0(
∑

w,v,x,y

AwAx ⊗ aw,vAvbx,yAy)

=
∑

w,v,x,y

AwAx ⊗ φ0(aw,v)Avφ0(bx,y)Ay by Theorem 9.1.

= φ0(∆(a))φ0(∆(b))

= ∆B(a)∆B(b)

= ∆B(ab).

Since the hi generate B this completes the proof. �
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