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Abstract. In his classic book on symmetric functions, Macdonald describes a remarkable result by Green
relating the character theory of the finite general linear group to transition matrices between bases of
symmetric functions. This connection allows us to analyze the representation theory of the general linear
group via symmetric group combinatorics. Using the work of Ennola, Kawanaka, Lusztig and Srinivasan, this
paper describes the analogous setting for the finite unitary group. In particular, we explain the connection
between Deligne-Lusztig theory and Ennola’s efforts to generalize Green’s work, and from this we deduce
various representation theoretic results. Applications include finding certain sums of character degrees, and
a model of Deligne-Lusztig type for the finite unitary group, which parallels results of Klyachko and Inglis
and Saxl for the finite general linear group.

Résumé. Dans son livre classique sur les fonctions symétriques, Macdonald décrit un résultat remarquable
dû à Green, qui relie la théorie des caractères du groupe général liéaire fini, aux matrices de transition
entre bases de fonctions symétriques. Cette connexion permet d’analyser la théorie de représentation du
groupe général linéaire à l’aide de combinatoires de groupes symétriques. En utilisant le travail d’Ennola,
Kawanaka, Lusztig et Srinivasan, le présent article décrit le cadre analogue pour le groupe unitaire fini.
En particulier, nous expliquons la connexion entre la théorie de Deligne-Lusztig et les efforts d’Ennola
concernant la généralisation du travail de Green, et nous en déduisons plusieurs résultats en théorie de
représentation. Parmi les applications, nous obtenons certaines sommes de degés de caractères, et un modèle
du type Deligne-Lusztig pour le groupe unitaire fini, qui met en parallèle les résultats de Klyachko, Inglis
et Saxl pour le groupe général linéaire fini.

1. Introduction

In his seminal work [7], Green described a remarkable connection between the class functions of the
finite general linear group GL(n,Fq) and a generalization of the ring of symmetric functions of the symmetric
group Sn. In particular, Green defines a map, called the characteristic map, that takes irreducible characters
to Schur-like symmetric functions, and recovers the character table of GL(n,Fq) as the transition matrix
between these Schur functions and Hall-Littlewood polynomials [14, Chapter IV]. Thus, we can use the
combinatorics of the symmetric group Sn to understand the representation theory of GL(n,Fq). Some of the
implications of this approach include an indexing of irreducible characters and conjugacy classes of GL(n,Fq)
by multi-partitions and a formula for the degrees of the irreducible characters in terms of these partitions.

This paper describes the parallel story for the finite unitary group U(n,Fq2) by collecting known results
for this group and examining some applications of the unitary characteristic map. Inspired by Green, Ennola
[4, 5] used results of Wall [16] to construct the appropriate ring of symmetric functions and characteristic
map. Ennola was able to prove that the analogous Schur-like functions correspond to an orthonormal basis
for the class functions, and conjectured that they corresponded to the irreducible characters. He theorized
that the representation theory of U(n,Fq2) should be deduced from the representation theory of GL(n,Fq) by
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substituting “−q” for every occurrence of “q”. The general phenomenon of obtaining a polynomial invariant
in q for U(n,Fq2) by this substitution has come to be known as “Ennola duality”.

Roughly a decade after Ennola made his conjecture, Deligne and Lusztig [2] constructed a family of
virtual characters, called Deligne-Lusztig characters, to study the representation theory of arbitrary finite
reductive groups. Lusztig and Srinivasan [13] then computed an explicit decomposition of the irreducible
characters of U(n,Fq2) in terms of Deligne-Lusztig characters. Kawanaka [11] used this composition to
demonstrate that Ennola duality applies to Green functions, thereby improving results of Hotta and Springer
[9] and finally proving Ennola’s conjecture.

This paper begins by describing some of the combinatorics and group theory associated with the finite
unitary groups. Section 2 defines the finite unitary groups, outlines the combinatorics of multi-partitions,
and gives a description of some of the key subgroups. Section 2.4 analyzes the conjugacy classes of U(n,Fq2)
and the Jordan decomposition of these conjugacy classes.

Section 3 outlines the statement and development of the Ennola conjecture from two perspectives. Both
points of view define a map from a ring of symmetric functions to the character ring C of U(n,Fq2). However,
the first uses the multiplication for C as defined by Ennola, and the second uses Deligne-Lusztig induction
as the multiplicative structure of C. This multiplicative structure on the graded ring of characters of the
unitary group was studied by Digne and Michel in [3], where the focus is that this multiplication induces a
Hopf algebra structure. While some of the results in Section 3 appear in a different form in [3], our approach
focuses on the explicit map between characters and symmetric functions.

The main results are

I. (Theorem 3.2) The Deligne-Lusztig characters correspond to power-sum symmetric functions via the
characteristic map of Ennola.

II. (Corollary 3.2) The multiplicative structure that Ennola defined on C is Deligne-Lusztig induction.

Section 4 computes the degrees of the irreducible characters, and uses this result to evaluate various
sums of character degrees (see [14, IV.6, Example 5] for the GL(n,Fq) analogue of this method). The main
results are

III. (Theorem 4.1) An irreducible χλ character of U(m,Fq2 ) corresponds to

(−1)bm/2c+n(λ)sλ and χλ(1) = qn(λ′)

∏

1≤i≤m

(qi − (−1)i)

∏

�∈λ

(qh(�) − (−1)h(�))
,

where sλ is a Schur-like function, and both n(λ) and h(�) are combinatorial statistics on the multi-partition
λ.

IV. (Corollary 4.2) If PΘ
n indexes the irreducible characters χλ of U(n,Fq2), then

∑

λ∈PΘ
n

χλ(1) = |{g ∈ U(n,Fq2 ) | g symmetric}|.

V. (Theorem 4.3) We give a subset X ⊆ PΘ
2n such that

∑

λ∈X

χλ(1) = (q + 1)q2(q3 + 1) · · · q2n−2(q2n−1 + 1) =
|U(2n,Fq2)|

|Sp(2n,Fq)|
.

Section 5 uses results by Ohmori [15] and Henderson [8] to adapt a model for the general linear group,
found by Klyachko [12] and Inglis and Saxl [10], to the finite unitary group. The main result is

VI. (Theorem 5.2) Let Um = U(m,Fq2), where q is odd, and let Γm be the Gelfand-Graev character of Um,

1 be the trivial character of the finite symplectic group Sp2r = Sp(2r,Fq), and RG
L be the Deligne-Lusztig

induction functor. Then
∑

0≤2r≤m

RUm

Um−2r⊕U2r

(

Γm−2r ⊗ IndU2r

Sp2r
(1)

)

=
∑

λ∈PΘ
m

χλ.

That is, in the theorem of Klyachko, one may replace parabolic induction by Deligne-Lusztig induction to
obtain a theorem for the unitary group.
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These results give considerable combinatorial control over the representation theory of the finite unitary
group, and there are certainly more applications to these results than what we present in this paper. Fur-
thermore, this characteristic map gives some insight as to how a characteristic map might look in general
type, using the invariant rings of other Weyl groups.

2. Preliminaries

2.1. The unitary group and its underlying field. Let K = F̄q be the algebraic closure of the finite
field with q elements and let Km = Fqm denote the finite subfield with qm elements. Let GL(n,K) denote
the general linear group over K, and define Frobenius maps

(2.1)
F :GL(n,K) −→ GL(n,K)

(aij) 7→ (aq
ji)
−1,

and
F ′ :GL(n,K) −→ GL(n,K)

(aij) 7→ (aq
n−j,n−i)

−1.

Then the unitary group Un = U(n,K2) is given by

Un = GL(n,K)F = {a ∈ GL(n,K) | F (a) = a}(2.2)

∼= GL(n,K)F ′

= {a ∈ GL(n,K) | F ′(a) = a}.(2.3)

We define the multiplicative groups Mm as

Mm = GL(1,K)F m

= {x ∈ K | xqm−(−1)m

= 1}.

Note that Mm
∼= K×m only if m is even. We identify K× with the inverse limit lim

←
Mm with respect to the

norm maps
Nmr : Mm −→ Mr

x 7→ xx−q · · ·x(−q)m/r−1 , where m, r ∈ Z≥1 with r | m.

If M∗m is the group of characters of Mm, then the direct limit K∗ = lim
→

M
∗
m gives the group of characters of

K×. Let
Θ = {F -orbits of K

∗}.

A polynomial f(t) ∈ K2[t] is F -irreducible if there exists an F -orbit {x,x
−q, . . . , x(−q)d

} of K× such that

f(t) = (t− x)(t − x−q) · · · (t− x(−q)d

).

Let

(2.4) Φ = {f ∈ K2[t] | f is F -irreducible}
1−1
←→ {F -orbits of K

×}.

2.2. Combinatorics of Φ-partitions and Θ-partitions. Fix an ordering of Φ and Θ, and let

P = {partitions} and Pn = {ν ∈ P | |ν| = n}.

Let X be either Φ or Θ. An X -partition ν = (ν(x1),ν(x2), . . .) is a sequence of partitions indexed by X .
The size of an X -partition ν is

(2.5) ||ν|| =
∑

x∈X

|x||ν(x)|, where |x| =

{

|x| if X = Θ,
d(x) if X = Φ,

|x| is the size of the orbit x ∈ Θ, and d(x) is the degree of the polynomial x ∈ Φ. Let

(2.6) PXn = {X -partitions ν | ||ν|| = n}, and PX =
∞
⋃

n=1

PXn .

For ν ∈ PX , let

(2.7) n(ν) =
∑

x∈X

|x|n(ν(x)), where n(ν) =

`(ν)
∑

i=1

(i− 1)νi.

The conjugate ν ′ of ν is the X -partition ν ′ = (ν(x1)
′,ν(x2)

′, . . .), where ν′ is the usual conjugate partition
for ν ∈ P .

The semisimple part νs of ν = (ν(x1),ν(x2), . . .) ∈ PXn is

(2.8) νs = ((1|ν(x1)|), (1|ν(x2)|), . . .) ∈ PXn ,
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and the unipotent part νu of ν ∈ PXn is given by

(2.9) νu(11) has parts {|x|ν(x)i | x ∈ X , i = 1, . . . , `(ν(x))}

where

11 =

{

{1} if X = Θ,
t− 1 if X = Φ,

1 is the trivial character in K
∗, and νu(x) = ∅ for x 6= 11.

2.3. Levi subgroups and maximal tori. Let X be either Φ or Θ as in Section 2.2.
For ν ∈ PXn , let

(2.10) Lν =
⊕

x∈Xν

Lν(x), where Xν = {x ∈ X | ν(x) 6= ∅},

and for x ∈ Xν ,

(2.11) Lν(x) =

{

U(|ν(x)|,K2|x|) if |x| is odd,
GL(|ν(x)|,K|x|) if |x| is even.

Then Lν is a Levi subgroup of Un = U(n,K2) (though not uniquely determined by ν). The Weyl group

(2.12) Wν =
⊕

x∈Xν

S|ν(x)|,

of Lν has conjugacy classes indexed by

(2.13) Pν
s = {γ ∈ PX | γs = νs},

and the size of the conjugacy class cγ is

(2.14) |cγ | =
|Wγ |

zγ

, where zγ =
∏

x∈X

zγ(x) and zγ =

`(γ)
∏

i=1

imimi!,

for γ = (1m12m2 · · · ) ∈ P .
For every ν = (ν1, ν2, . . . , ν`) ∈ Pn there exists a maximal torus (unique up to isomorphism) Tν of Un

such that

Tν
∼= Mν1 ×Mν2 × · · · ×Mν`

.

For every γ ∈ Pµ
s , there exists a maximal torus (unique up to isomorphism) Tγ ⊆ Lν such that

(2.15) Tγ =
⊕

x∈Xν

Tγ(x), where Tγ(x) ∼= M|x|γ(x)1 × · · · ×M|x|γ(x)`
.

Note that as a maximal torus of Un, the torus Tγ
∼= Tγu(11).

2.4. Conjugacy classes and Jordan decomposition.

Proposition 2.1. The conjugacy classes cµ of Un are indexed by µ ∈ PΦ
n .

For r ∈ Z≥0, let ψr(x) =
∏r

i=1(1 − x
i).

Proposition 2.2 (Wall). Let g ∈ cµ. The order aµ of the centralizer g in Un is

aµ = (−1)||µ||
∏

f∈Φ

aµ(f)

(

(−q)d(f)
)

, where aµ(x) = x|µ|+2n(µ)
∏

j

ψmj (x
−1),

for µ = (1m12m23m3 · · · ) ∈ P.

For µ ∈ PΦ, let Lµ be as in (2.10). Note that |Lµ| = aµs
.

Lemma 2.1. Suppose g ∈ cµ with Jordan decomposition g = su. Then

(a) s ∈ cµs
and u ∈ cµu

, where µs and µu are as in (2.8) and (2.9),
(b) the centralizer CUn(s) of s in Un is isomorphic to Lµ.
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3. The Ennola Conjecture

3.1. The characteristic map. Let X = {X1, X2, . . .} be an infinite set of variables and let Λ(X) be
the graded C-algebra of symmetric functions in the variables {X1, X2, . . .}. Define the power-sum symmetric
function, pν(X), and the Schur function, sλ(X), for ν, λ ∈ P , as they are in [14, Chapter I].

The irreducible characters ωλ of Sn are indexed by λ ∈ Pn, as in [14, Chapter I]. Let ωλ(ν) be the value
of ωλ on a permutation with cycle type ν. The relationship between pν(X) and sλ(X) is given by

(3.1) sλ(X) =
∑

ν∈P|λ|

ωλ(ν)z−1
ν pν(X), where zν =

∏

i≥1

imimi!

is the order of the centralizer in Sn of the conjugacy class corresponding to ν = (1m12m2 · · · ) ∈ P . Let t ∈ C.
For µ ∈ P , let the Hall-Littlewood symmetric function Pµ(X ; t) be as it is defined in [14].

For ν, µ ∈ Pn, the classical Green function Qµ
ν (t) is given by

(3.2) pν(X) =
∑

µ∈P|ν|

Qµ
ν (t−1)tn(µ)Pµ(X ; t).

The pν(X), sλ(X), and Pµ(X ; t), are all bases of Λ(X) as a C-algebra.

For every f ∈ Φ, fix a set of independent variables X(f) = {X
(f)
1 , X

(f)
2 , . . .}, and for any symmetric

function h, we let h(f) = h(X(f)) denote the symmetric function in the variables X(f). Let

Λ = C-span{Pµ | µ ∈ PΦ}, where Pµ = (−q)−n(µ)
∏

f∈Φ

Pµ(f)(f ; (−q)−d(f)).

Then

Λ =
⊕

n≥0

Λn, where Λn = C-span{Pµ | ||µ|| = n},

makes Λ a graded C-algebra. Define a Hermitian inner product on Λ by

〈Pµ, Pν〉 = a−1
µ δµν .

For each ϕ ∈ Θ let Y (ϕ) = {Y
(ϕ)
1 , Y

(ϕ)
2 , . . .} be an infinite variable set, and for a symmetric function h,

let h(ϕ) = h(Y (ϕ)). Relate symmetric functions in the X variables to symmetric functions in the Y variables
via the transform

(3.3) pn(ϕ) = (−1)n|ϕ|−1
∑

x∈Mn|ϕ|

ξ(x)pn|ϕ|/d(fx)(fx),

where ϕ ∈ Θ, ξ ∈ ϕ, and fx ∈ Φ satisfies fx(x) = 0.
Then

(3.4) Λ = C-span{sλ | λ ∈ PΘ}, where sλ =
∏

ϕ∈Θ

sλ(ϕ)(ϕ).

Let Cn denote the set of complex-valued class functions of the group Un, and for ||µ|| = n, let πµ :
Un → C be the class function which is 1 on cµ and 0 elsewhere. Then the πµ form a C-basis for Cn. By
Proposition 2.2, the usual inner product on class functions of finite groups, 〈·, ·〉 : Cn × Cn → C, satisfies

〈πµ, πλ〉 = a−1
µ δµλ.

For αi ∈ Cni , Ennola [5] defined a product α1 ? α2 ∈ Cn1+n2 , which takes the following value on the
conjugacy class cλ:

α1 ? α2(cλ) =
∑

||µi||=ni

gλ
µ1µ2

α1(cµ1
)α2(cµ2

),

where gλ
µ1µ2

is the product of Hall polynomials (see [14, Chapter II])

gλ
µ1µ2

=
∏

f∈Φ

g
λ(f)
µ1(f)µ2(f)((−q)

d(f)).
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Extend the inner product to C =
⊕

n≥0 Cn, by requiring the components Cn and Cm to be orthogonal for
n 6= m. This gives C a graded C-algebra structure. The characteristic map is

ch : C −→ Λ
πµ 7→ Pµ, for µ ∈ PΦ.

Proposition 3.1. Let multiplication in the character ring C of Un be given by ?. Then the characteristic
map ch : C → Λ is an isometric isomorphism of graded C-algebras.

Following the work of Green [7] on the general linear group, Ennola was able to obtain the following
result. We may follow the proof in Macdonald [14, IV.4] on the general linear group case, making the
appropriate changes.

Proposition 3.2 (Ennola). The set {sλ | λ ∈ PΘ} is an orthonormal basis for Λ.

Now let χλ ∈ R be class functions so that χλ(1) > 0 and ch(χλ) = ±sλ. Ennola conjectured that
{χλ | λ ∈ PΘ

n } is the set of irreducible characters of Un. He pointed out that if one could show that the
product ? takes virtual characters to virtual characters, then the conjecture would follow. There is no known
direct proof of this fact, however. Significant progress on Ennola’s conjecture was only made after the work
of Deligne and Lusztig [2].

3.2. Deligne-Lusztig Induction. Let Tν
∼= Mν1 × · · · ×Mν`

be a maximal torus of Un. If t ∈ Tν ,
then t is conjugate to

J(1m1)(f1)⊕ · · · ⊕ J(1m` )(f`), where fi ∈ Φ, mid(fi) = νi.

Define γt ∈ P
Φ by

(3.5) γt(f) has parts {mi | fi = f}.

Note that (γt)u(t− 1) = ν, but in general t /∈ cγt
.

For µ ∈ PΦ, let Lµ, γ ∈ Pµ
s and Tγ be as in Section 2.3. Let θ be a character of Tν . The Deligne-Lusztig

character Rν(θ) = RUn

Tν
(θ) is the virtual character of Un given by

(

Rν(θ)
)

(g) =
∑

t∈Tν
γt∈P

µ
s

θ(t)Q
Lµ

Tγt
(u),

where g ∈ cµ has Jordan decomposition g = su (thus, by Lemma 2.1 CUn(s) ∼= Lµ), and Q
Lµ

Tγt
(u) is a Green

function for the unitary group (see, for example, [1]).
Deligne and Lusztig proved that the Rν(θ) span the class functions of Un,

Cn = C-span{Rν(θ) | ν ∈ Pn, θ ∈ Hom(Tν ,C
×)},

so we may define Deligne-Lusztig induction by

(3.6)
R

Um+n

Um⊕Un
: Cm ⊗ Cn −→ Cm+n

RUm
α (θα)⊗RUn

β (θβ) 7→ R
Um+n

Tα⊕Tβ
(θα ⊗ θβ),

for α ∈ Pm, β ∈ Pn, θα ∈ Hom(Tα,C), and θβ ∈ Hom(Tβ ,C).
Let Λ and C be as in Section 3.1, except we now give C a graded C-algebra structure using Deligne-

Lusztig induction. That is, we define a multiplication ◦ on C by

χ ◦ η = R
Um+n

Um⊕Un
(χ⊗ η), for χ ∈ Cm and η ∈ Cn.

We recall the characteristic map defined in Section 3.1,

ch : C −→ Λ
πµ 7→ Pµ for µ ∈ PΦ.

It is immediate that ch is an isometric isomorphism of vector spaces, but it is not yet clear if ch is also a
ring homomorphism when C has multiplication given by Deligne-Lusztig induction.



ON THE CHARACTERISTIC MAP OF FINITE UNITARY GROUPS

3.3. The Ennola conjecture. In this section we summarize the remaining steps that are necessary
to obtain the proof of the Ennola conjecture. First, we must compute ch(Rν(θ)), and to do so we need to

write the Green functions Q
Lµ

Tγ
(u) as polynomials in q. These Green functions turn out to be those of the

general linear group, except with q replaced by −q, which is the essence of Ennola’s original idea. This fact
was proven by Hotta and Springer [9] for the case that p = char(Fq) is large compared to n, and was finally
proven in full generality by Kawanaka [11].

Theorem 3.1 (Hotta-Springer, Kawanaka). The Green functions for the unitary group are given by

Q
Lµ

Tγ
(u) = Qµ

γ (−q), where

Qµ
γ (−q) =

∏

f∈Φµ

Q
µ(f)
γ(f)((−q)

d(f)),

and Qµ
γ(q) is the classical Green function as in (3.2).

For ν = (ν1, ν2, . . . , ν`) ∈ P and θ = θ1 ⊗ θ2 ⊗ · · · ⊗ θ` a character of Tν, define

pµνθ
=

∏

ϕ∈Θ

pµνθ(ϕ)(ϕ), where µνθ(ϕ) = (νi/|ϕ| | θi ∈ ϕ).

From Theorem 3.1 and the machinery of the characteristic map, we obtain the following.

Theorem 3.2. Let ν = (ν1, ν2, . . . , ν`) ∈ P, θ = θ1⊗θ2⊗· · ·⊗θ` be a character of Tν , and ν = µνθ ∈ P
Θ.

Then

ch
(

Rν(θ)
)

= (−1)||ν||−`(ν)pν .

Corollary 3.1. Let multiplication in the character ring C of Un be given by ◦. Then the characteristic
map ch : C → Λ is an isometric isomorphism of graded C-algebras.

An immediate consequence is that the graded multiplication that Ennola originally defined on C is
exactly Deligne-Lusztig induction, or

Corollary 3.2. Let χ ∈ Cm and η ∈ Cn. Then

χ ◦ η = χ ? η.

We therefore have the advantage of taking either definition when convenience demands.
For λ ∈ PΘ, let Lλ, Wλ, and Tγ , γ ∈ Pλ

s , be as in Section 2.3.
Note that the combinatorics of γ almost specifies character θγ of Tγ in the sense that

θγ(Tγ(ϕ)) = θϕ(Tγ(ϕ)), for some θϕ ∈ ϕ.

In fact, we may define

(3.7) Rγ = RUn

Tγ
(θγ) = ch−1

(

(−1)||γ||−`(γ)pγ

)

,

where θγ is any choice of the θϕ’s.
For every λ ∈ PΘ there exists a character ωλ of Wλ defined by

ωλ(γ) =
∏

ϕ∈Θ

ωλ(ϕ)(γ(ϕ)),

where ωλ(γ) is the value of ωλ on the conjugacy class cγ corresponding to γ ∈ PΘ
s .

In [13], Lusztig and Srinivasan decomposed the irreducible characters of Un as linear combinations of
Deligne-Lusztig characters, as follows.

Theorem 3.3 (Lusztig-Srinivasan). Let λ ∈ PΘ
n . Then there exists τ ′(λ) ∈ Z≥0 such that the class

function

R(λ) = (−1)τ ′(λ)+bn/2c+
P

ϕ∈Θ |λ(ϕ)|+|ϕ|d|λ(ϕ)|/2e
∑

γ∈Pλ
s

ωλ(γ)

zγ

Rγ

is an irreducible character of Un (zγ is as in (2.14)).

Finally, we obtain the Ennola Conjecture.
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Corollary 3.3 (Ennola Conjecture). For λ ∈ PΘ, there exists τ(λ) ∈ Z≥0 such that
{

ch−1

(

(−1)τ(λ)sλ

)

| λ ∈ PΘ
n

}

is the set of irreducible characters of Un.

Proof. By Theorem 3.3 and Theorem 3.2,

ch(R(λ)) = (−1)τ ′(λ)+bn/2c+
P

ϕ∈Θ |λ(ϕ)|+|ϕ|d|λ(ϕ)|/2e
∑

γ∈Pλ
s

ωλ(γ)

zγ

(−1)n−`(γ)pγ

= (−1)τ ′(λ)+bn/2c+n+
P

ϕ∈Θ |ϕ|d|λ(ϕ)|/2e
∑

γ∈Pλ
s

ωλ(γ)

zγ

(−1)
P

ϕ∈Θ |λ(ϕ)|−`(γ)pγ

Note that the sign character ωλs of Wλ acts by

ωλs(γ) = (−1)
P

ϕ∈Θ |γ(ϕ)|−`(γ),

and that ωλ ⊗ ωλs = ωλ′

, so since γ ∈ Pλ
s ,

ch(R(λ)) = (−1)τ ′(λ)+bn/2c+n+
P

ϕ∈Θ |ϕ|d|λ(ϕ)|/2e
∑

γ∈Pλ
s

(ωλ ⊗ ωλs)(γ)

zγ

pγ

= (−1)τ ′(λ)+bn/2c+n+
P

ϕ∈Θ |ϕ|d|λ(ϕ)|/2e
∑

γ∈Pλ
s

ωλ′

(γ)

zγ

pγ ,

and by applying (3.1) to a product over Θ,

= (−1)τ ′(λ)+bn/2c+n+
P

ϕ∈Θ |ϕ|d|λ(ϕ)|/2esλ′ . �

Remark. There are at least two natural ways to index the irreducible characters of Un by Θ-partitions:
Theorem 3.3 gives a natural indexing by Θ-partitions, but Corollary 3.3 indicates that the conjugate choice
is equally natural. Since we like to think of Schur functions as irreducible characters, we have chosen the
latter indexing. However, several references, including Ennola [5], Ohmori [15], and Henderson [8], make
use of the former.

4. Characters degrees

In this section, we calculate the degrees of the irreducible characters of the finite unitary group and find
several character degree sums.

Let λ ∈ PΘ, and suppose � ∈ λ is in position (i, j) in λ(ϕ) for some ϕ ∈ Θ. The hook length h(�) of
� is

h(�) = |ϕ|h(�), where h(�) = λ(ϕ)i − λ(ϕ)′j − i− j + 1,

is the usual hook length for partitions.
For λ ∈ PΘ, let

ηλ = ch−1(sλ).

Adapting the computations in [14, IV.6], we obtain the following result.

Theorem 4.1. Let λ ∈ PΘ and let 1 be the identity in U||λ||. Then

ηλ(1) = (−1)τ(λ)qn(λ′)

∏

1≤i≤||λ||

(qi − (−1)i)

∏

�∈λ

(qh(�) − (−1)h(�))
,

where τ(λ) = ||λ||(||λ||+3)/2+n(λ) ≡ b||λ||/2c+n(λ) (mod 2). So for each λ, we have χλ = (−1)τ(λ)ηλ.

The following result follows from Theorem 4.1 and the Littlewood-Richardson rule.
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Corollary 4.1. Let µ,ν ∈ PΘ. Then χµ ◦ χν is a character if and only if every λ ∈ PΘ such that
cλµν > 0 satisfies

n(µ) + n(ν) ≡ n(λ) + ||µ|| ||ν|| (mod 2)

Following a similar approach to [14, IV.6, Example 5], we consider the coefficient of tm in the series

S =
∑

λ∈PΘ

(−1)n(λ)+||λ||δ(sλ)t||λ||,

where n(λ) is as in (2.7), and we obtain the following result.

Theorem 4.2. The sum of the degrees of the complex irreducible characters of Um is given by
∑

||λ||=m

χλ(1) = (q + 1)q2(q3 + 1)q4(q5 + 1) · · ·
(

qm +
(1 − (−1)m)

2

)

.

Write fUm(q) =
∑

||λ||=m χλ(1). The polynomial fGm(q) expressing the sum of the degrees of the

complex irreducible characters of Gm = GL(m,Fq), was computed in [6] for odd q and in [12] and Example
6 of [14, IV.6] for general q. From these results we see that

fUm(q) = (−1)m(m+1)/2fGm(−q),

another example of Ennola duality.
Gow [6] and Klyachko [12] proved that the sum of the degrees of the complex irreducible characters

of Gn is equal to the number of symmetric matrices in Gn. We obtain the same result for Un by applying
Theorem 4.2 and a counting argument.

Corollary 4.2. The sum of the degrees of the complex irreducible characters of U(n,Fq2 ) is equal to
the number of symmetric matrices in U(n,Fq2).

A Θ-partition λ is even if every part of λ(ϕ) is even for every ϕ ∈ Θ.

Theorem 4.3. The sum of the degrees of the complex irreducible characters of U2m corresponding to λ

such that λ′ is even is given by
∑

||λ||=2m

λ′
even

χλ(1) = (q + 1)q2(q3 + 1) · · · q2m−2(q2m−1 + 1) =
|U(2m,Fq2)|

|Sp(2m,Fq)|
.

Write gUm(q) =
∑

||λ||=2m,λ′ even χ
λ(1), and let gGm(q) denote the corresponding sum for Gm. The

polynomial gGm(q) was calculated in Example 7 of [14, IV.6], and similar to the previous example, we see
that we have

gUm(q) = (−1)mgGm(−q).

In the case that q is odd, Proposition 4.3 follows from the following stronger result obtained by Henderson
[8]. Let Sp2n = Sp(2n,Fq) be the symplectic group over the finite field Fq.

Theorem 4.4 (Henderson). Let q be odd. The decomposition of IndU2n

Sp2n
(1) into irreducibles is given by

IndU2n

Sp2n
(1) =

∑

||λ||=2n

λ′even

χλ.

The fact that Proposition 4.3 holds for all q suggests that Theorem 4.4 should as well.

5. A Deligne-Lusztig model

A model of a finite group G is a representation ρ, which is a direct sum of representations induced from
one-dimensional representations of subgroups of G, such that every irreducible representation of G appears
as a component with multiplicity 1 in the decomposition of ρ.

Klyachko [12] and Inglis and Saxl [10] obtained a model for GL(n,Fq), where the induced representations
can be written as a Harish-Chandra product of Gelfand-Graev characters and the permutation character of
the finite symplectic group.

In this section we show that the same result is true for the finite unitary group, except the Harish-
Chandra product is replaced by Deligne-Lusztig induction. The result is therefore not a model for U(n,Fq)
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in the finite group character induction sense, but rather from the Deligne-Lusztig point of view.

Let U ′n = GL(n,K)F ′

as in (2.3), and let

B< = {u ∈ U ′n | u unipotent and uppertriangular} ⊆ U ′n.

Fix a nontrivial character ψ : K
+
2 → C

× of the additive group of the field K2 such that the restriction to the
subgroup {x ∈ K2 | xq + x = 0} is also nontrivial. The map ψ(n) : B< → C given by

ψ(n)(u) = ψ
(

u12 + · · ·+ ubn/2c−1,bn/2c + ubn/2c,dn/2e+1

)

, for u = (uij) ∈ B<,

is a linear character of B<. Then

Γ′(n) = Ind
U ′

n

B<
(ψ(n))

is the Gelfand-Graev character of U ′n. Let Γ(n) be the corresponding Gelfand-Graev character of Un =

GL(n,K)F . For λ ∈ PΘ, define

ht(λ) = max{`(λ(ϕ)) | ϕ ∈ Θ}.

The following appears in Section 5.2 of [15], but we can also give a proof using the characteristic map.

Theorem 5.1. The decomposition of Γ(m) into irreducibles is given by

Γ(m) =
∑

λ∈PΘ
m

ht(λ)=1

χλ.

For a partition λ, let o(λ) denote the number of odd parts of λ, and for λ ∈ PΘ, let o(λ) =
∑

ϕ∈Θ |ϕ|o(λ(ϕ)).

Theorem 5.2. Let q be odd. For each r such that 0 ≤ 2r ≤ m,

Γm−2r ◦ IndU2r

Sp2r
(1) =

∑

o(λ′)=m−2r

χλ.

Furthermore,
∑

0≤2r≤m

Γm−2r ◦ IndU2r

Sp2r
(1) =

∑

||λ||=m

χλ

Proof. Suppose µ,ν ∈ PΘ, such that ht(µ) = 1 and ν′ is even. From the characteristic map, Corollary
3.3, and Pieri’s formula [14, I.5.16],

(5.1) χµ ◦ χν = (−1)τ(µ)+τ(ν)
∑

λ

χλ,

where the sum is taken over all λ such that for every ϕ ∈ Θ, λ(ϕ)− ν(ϕ) is a horizontal |µ(ϕ)|-strip.
We now use Corollary 4.1 to show that χµ◦χν is a character. As λ(ϕ)−ν(ϕ) is a horizontal |µ(ϕ)|-strip,

the part λ(ϕ)′i is either ν(ϕ)′i or ν(ϕ)′i + 1 for every i = 1, 2, . . . , `(λ(ϕ)). By assumption, ν ′ is even, so
ν(ϕ)′i is even for every ϕ ∈ Θ, and so

(

ν(ϕ)′i + 1

2

)

= ν(ϕ)′i +

(

ν(ϕ)′i
2

)

≡

(

ν(ϕ)′i
2

)

(mod 2).

Thus, n(λ(ϕ)) =
∑

i

(

λ(ϕ)′i
2

)

≡ n(ν(ϕ)) (mod 2). The assumption ht(µ) = 1 implies n(µ(ϕ)) = 0, and since
||ν|| is even,

n(µ) + n(ν) ≡ n(λ) + ||µ|| ||ν|| (mod 2).

By Corollary 4.1, χµ ◦ χν is a character.
Use the decompositions of Theorem 4.4 and Theorem 5.1 in the product (5.1) to observe that the

irreducible characters χλ in the decomposition of Γm−2r ◦ IndU2r

Sp2r
(1) are indexed by λ ∈ PΘ

m such that for

every ϕ, λ(ϕ) − ν(ϕ) is a horizontal |µ(ϕ)|-strip, where ||µ|| = m − 2r, for some ν(ϕ) such that ν(ϕ)′ is
even. Then the number of odd parts of λ(ϕ)′ is exactly |µ(ϕ)|, and so the λ in the decomposition must
satisfy

∑

ϕ∈Θ |ϕ|o(λ(ϕ)′) = ||µ|| = m− 2r. �
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