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Abstract. We prove that the Kazhdan-Lusztig polynomials are combinatorial invariants for intervals up to
length 8 in Coxeter groups of type A and up to length 6 in Coxeter groups of type B and D. As a consequence
of our methods, we also obtain a complete classification, up to isomorphism, of Bruhat intervals of length 7
in type A and of length 5 in types B and D, which are not lattices.

Résumé. On montre que les polynômes de Kazhdan-Lusztig sont invariants combinatoires pour les intervaux
de longueur jusqu’à 8 pour les groupes de Coxeter de type A et de longueur jusqu’à 6 pour les groupes de
Coxeter de type B et D. Comme conséquence de nos méthodes, on obtient aussi une classification complète,
à isomorphisme près, des intervaux de Bruhat de longueur 7 pour le type A et de longueur 5 pour les types
B et D, qui ne sont pas des réseaux.

1. Introduction

In [12] Kazhdan and Lusztig defined, for every Coxeter group W , a family of polynomials, indexed
by pairs of elements of W , which have become known as the Kazhdan-Lusztig polynomials of W . They
are related to the algebraic geometry and topology of Schubert varieties, and also play a crucial role in
representation theory (see, e.g., [7, Chapter 7], [1, Chapter 5]). In order to prove the existence of these
polynomials, Kazhdan and Lusztig used another family of polynomials which arise from the multiplicative
structure of the Hecke algebra associated with W . These are known as the R-polynomials of W . Lusztig’s
and Dyer’s combinatorial invariance conjecture states that the Kazhdan-Lusztig polynomial associated with
a pair (x, y) supposedly only depends on the poset structure of the Bruhat interval [x, y]. The conjecture is
equivalent to the same statement for the R-polynomials and it is known to hold for intervals up to length 4.
In [10] we proved that the conjecture is true for intervals of length 5 and 6 in Coxeter groups of type A.

In this paper, we establish the conjecture for intervals of length 7 and 8 in Coxeter groups of type A and
for those of length 5 and 6 in Coxeter groups of type B and D. We use the combinatorial descriptions of such
groups in terms of (signed) permutations (see, e.g., [1, Chapter 8]). One of the main tools is an extension of
the notion of diagram of a pair, introduced for the symmetric group by Kassel et al. in [11] and developed
in [9], to the groups of signed permutations. The main idea behind the proof is that of determining certain
subsets of pairs of (signed) permutations, which somehow “summarize” the behaviour of all the pairs. The
combinatorial invariance is then proved by enumerating all the pairs in these sets, with the assistance of
Maple computation, and for each of them determining the poset structure of the associated interval and
computing the corresponding R-polynomial. As a consequence of our methods, we also obtain a complete
classification, up to isomorphism, of Bruhat intervals of length 7 in type A and of length 5 in types B and
D, which are not lattices (see [2, 3, 6, 10] for previous classification results).
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2. Preliminaries

Let N = {1, 2, . . .} and Z be the set of integers. For n, m ∈ Z, with n ≤ m, let [n, m] = {n, n+1, . . . , m}.
For n ∈ N, let [n] = [1, n], [−n] = [−n,−1] and [±n] = [n] ∪ [−n]. We refer to [13] for general poset
theory. Given a poset P , we denote by C the covering relation. Given x, y ∈ P , with x < y, we set
[x, y] = {z ∈ P : x ≤ z ≤ y}, and call it an interval of P . We denote by −P the poset dual to P , that is,
the poset having the same elements of P but the reverse order.

We refer to [1] for basic notions about Coxeter groups. Given a Coxeter group W , with set of generators
S, the set of reflections of W is T = {wsw−1 : w ∈ W, s ∈ S}. Given x ∈ W , the length of x, denoted
by `(x), is the minimal k such that x is the product of k generators. The Bruhat graph of W , denoted by
BG(W ) is the directed graph having W as vertex set and such that there is an edge x → y if and only if
y = xt, with t ∈ T , and `(x) < `(y). If this happens, we label the edge (x, y) by the reflection t and write

x
t

−→ y. A Bruhat path is a (directed) path in the Bruhat graph of W . The Bruhat order of W is the partial
order induced by BG(W ): given x, y ∈ W , x ≤ y in the Bruhat order if and only if there is a Bruhat path
from x to y. Every Coxeter group W , partially ordered by the Bruhat order, is a graded poset with rank
function given by the length. For x, y ∈ W , with x < y, we set `(x, y) = `(y)− `(x) and call it the length of
the pair (x, y). In [9] we introduced the absolute length of the pair (x, y), denoted by a`(x, y), which is the

(directed) distance from x to y in BG(W ). If `(x, y) = 3, then it is known that x
t

−→ y if and only if the
interval [x, y] is isomorphic to the 2-crown, that is, the poset whose Hasse diagram is the following:

Finally, if W is finite then it has a maximum, denoted by w0. The maps x 7→ x−1 and x 7→ w0xw0 are
automorphisms of the Bruhat order, while the maps x 7→ xw0 and x 7→ w0x are antiautomorphisms.

We refer to [1, §5.2] for basic notions about reflection orderings, which are total orderings on the set T
of reflections with certain properties. We only recall that, if W is finite and s1s2 . . . sm is a reduced decom-
position of w0, then a possible reflection ordering is t1 ≺ t2 ≺ · · · ≺ tm, where ti = sm . . . si+1sisi+1 . . . sm,
for all i ∈ [m]. Moreover, all reflection orderings are obtained in this way (see [1, Exercise 5.20]).

We follow [1, Chapter 5] for the definition of R-polynomials and Kazhdan-Lusztig polynomials of W .
There exists a unique family of polynomials {Rx,y(q)}x,y∈W ⊆ Z[q] satisfying the following conditions:

(i) Rx,y(q) = 0, if x 6≤ y;
(ii) Rx,y(q) = 1, if x = y;
(iii) if x < y and s ∈ S is such that ys C y then

Rx,y(q) =

{
Rxs,ys(q), if xs C x,
qRxs,ys(q) + (q − 1)Rx,ys(q), if xs B x.

These are known as the R-polynomials of W . The existence of such a family is a consequence of the
invertibility of certain basis elements of the Hecke algebra H of W and is proved in [7, §§7.4, 7.5]. Then,
there exists a unique family of polynomials {Px,y(q)}x,y∈W ⊆ Z[q] satisfying the following conditions:

(i) Px,y(q) = 0, if x 6≤ y;
(ii) Px,y(q) = 1, if x = y;
(iii) if x < y then deg(Px,y(q)) < `(x, y)/2 and

q`(x,y) Px,y

(
q−1

)
− Px,y(q) =

∑

x<z≤z

Rx,z(q)Pz,y(q).

These are known as the Kazhdan-Lusztig polynomials of W . The existence of such a family is proved in [7,
§§7.9, 7.10, 7.11]. We also need the following property of the R-polynomials (see [1, Exercise 5.11]):

(1)
∑

x≤z≤y

(−1)`(x,z)Rx,z(q)Rz,y(q) = 0.



COMBINATORIAL INVARIANCE OF KAZHDAN-LUSZTIG POLYNOMIALS

Finally, there exists a unique family of polynomials {R̃x,y(q)}x,y∈W ∈ Z≥0[q] such that

Rx,y(q) = q`(x,y)/2R̃x,y(q1/2 − q−1/2)

for all x, y ∈ W . These are known as the R̃-polynomials of W and their coefficients have a nice combinatorial
interpretation in terms of reflection orderings. Given x, y ∈ W , with x < y, we denote by BP (x, y) the
set of all Bruhat paths from x to y. The length of ∆ = (x0, x1, . . . , xk) ∈ BP (x, y), denoted by |∆|,
is the number k of its edges. Let ≺ be a fixed reflection ordering on the set T of reflections. A path
∆ = (x0, x1, . . . , xk) ∈ BP (x, y), with

x0
t1−→ x1

t2−→ · · ·
tk−→ xk,

is said to be increasing with respect to ≺ if t1 ≺ t2 ≺ · · · ≺ tk. We denote by BP≺(x, y) the set of all paths
in BP (x, y) which are increasing with respect to ≺. Then, we have the following (see [1, Theorem 5.3.4]):

(2) R̃x,y(q) =
∑

∆∈BP≺(x,y)

q|∆|.

More precisely, set ` = `(x, y) and a` = a`(x, y), the following holds (see [4] and [9, Corollary 2.6]):

(3) R̃x,y(q) = q` + c`−2 q`−2 + · · · + ca`+2 qa`+2 + ca` qa`,

where ck = |{∆ ∈ BP≺(x, y) : |∆| = k}| ≥ 1, for all k ∈ [a`, ` − 2], with k ≡ ` (mod 2). Finally, by results
in [3] and [5], we have that the absolute length of a pair is a combinatorial invariant, that is, a`(x, y) only
depends on the poset structure of the interval [x, y].

We now briefly recall some basic facts about Bruhat order in classical Weyl groups, that is, Coxeter
groups of type A, B and D, following [1, Chapter 8]. We denote by Sn the symmetric group over n
elements. To denote a permutation x ∈ Sn we use the one-line notation: we write x = x1x2 . . . xn to mean
that x(i) = xi for all i ∈ [n]. The symmetric group Sn is a Coxeter group of type An−1, with generators
given by the simple transpositions (i, i + 1), for i ∈ [n − 1]. We recall that, given x ∈ Sn, a free rise of
x is a pair (i, j) ∈ N2, with i < j and x(i) < x(j), such that there is no k ∈ N, with i < k < j and
x(i) < x(k) < x(j). Given x, y ∈ Sn, then x C y in the Bruhat order if and only if y = x(i, j), where (i, j) is
a free rise of x. Following [8], if this happen we write y = ct(i,j)(x) and x = ict(i,j)(y), where ct stands for
covering transformation and ict for inverse covering transformation.

We denote by Bn the hyperoctahedral group, defined by

Bn = {x : [±n] → [±n] : x is a bijection, x(−i) = −x(i) for all i ∈ [n]}.

and call its elements signed permutations. To denote a signed permutation x ∈ Bn we use the window

notation: we write x = [x1, x2, . . . , xn], to mean that x(i) = xi for all i ∈ [n] (the images of the negative
entries are then uniquely determined). We also denote x by the sequence |x1| |x2| . . . |xn|, with the negative
entries underlined. For example, 3 2 1 denotes the signed permutation [−3,−2, 1]. As a set of generators for
Bn, we take S = {s0, s1, . . . , sn−1}, where s0 = (1,−1) and si = (i, i + 1)(−i,−i− 1) for all i ∈ [n− 1]. The
hyperoctahedral group Bn, with this set of generators, is a Coxeter group of type Bn. Let x ∈ Bn. A rise
(i, j) of x is central if (0, 0) ∈ [i, j] × [x(i), x(j)]. A central rise (i, j) of x is symmetric if j = −i. Then, we
have the following characterization of the covering relation in the Bruhat order of Bn (see [8, Theorem 5.5]).
Let x, y ∈ Bn. Then x C y if and only if either (i) y = x(i, j)(−i,−j), where (i, j) is a noncentral free rise of
x, or (ii) y = x(i, j), where (i, j) is a central symmetric free rise of x. In both cases we write y = ct(i,j)(x)
and x = ict(i,j)(y). The maximum of Bn is w0 = 12 . . . n.

We denote by Dn the even-signed permutation group, defined by

Dn = {x ∈ Bn : neg(x) is even}.

Notation and terminology are inherited from the hyperoctahedral group. As a set of generators for Dn, we
take S = {s0, s1, . . . , sn−1}, where s0 = (1,−2)(−1, 2) and si = (i, i + 1)(−i,−i − 1) for all i ∈ [n − 1]. The
even-signed permutation group Dn, with this set of generators, is a Coxeter group of type Dn. Let x ∈ Dn.
A central rise (i, j) of x is semi-free if {k ∈ [i, j] : x(k) ∈ [x(i), x(j)]} = {i,−j, j}. Then, for x, y ∈ Dn, we
have (see [8, Theorem 6.7]) x C y if and only if y = x(i, j)(−i,−j), where (i, j) is (i) a noncentral free rise
of x, or (ii) a central nonsymmetric free rise of x, or (iii) a central semi-free rise of x. In all cases we write
y = ct(i,j)(x) and x = ict(i,j)(y). The maximum of Dn is w0 = 12 . . . n if n is even, 1 2 . . . n if n is odd.
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3. Main tools

3.1. Diagram of a pair of (signed) permutations. Let W ∈ {Sn, Bn, Dn}. For convenience, we
set 〈n〉 = [n] if W = Sn and 〈n〉 = [±n] if W ∈ {Bn, Dn}. The diagram of a (signed) permutation x ∈ W is
the subset of Z2 defined by

Diag(x) = {(i, x(i)) : i ∈ 〈n〉}.

For x ∈ W and (h, k) ∈ 〈n〉2, we set

(4) x[h, k] = |{i ∈ 〈n〉 : i ≤ h, x(i) ≥ k}|

and given x, y ∈ W and (h, k) ∈ 〈n〉2, we set

(5) (x, y)[h, k] = y(h, k) − x(h, k)

There are well-known characterizations of the Bruhat order in Sn and Bn (see [1, Theorems 2.1.5, 8.1.8]),
which can be stated as follows: if W ∈ {Sn, Bn} and x, y ∈ W then

x ≤ y ⇔ (x, y)[h, k] ≥ 0, for all (h, k) ∈ 〈n〉2 .

See [1, Theorem 8.2.8] for a combinatorial characterization of the Bruhat order relation in Dn. Here we only
recall that if x, y ∈ Dn then only one implication is true:

x ≤ y ⇒ (x, y)[h, k] ≥ 0, for all (h, k) ∈ 〈n〉2 .

For our purposes, it is convenient to extend the definitions given in (4) and (5) to every (h, k) ∈ R2. We
call the mapping (h, k) 7→ (x, y)[h, k] the multiplicity mapping of the pair (x, y). Then, the diagram of the
pair (x, y) is the collection of: (i) the diagram of x, (ii) the diagram of y and (iii) the multiplicity mapping
of (x, y). From the preceding considerations, if x ≤ y, then the values of this mapping are always non-
negative. In this case, we pictorially represent the diagram of a pair (x, y) with the following convention: the
diagrams of x and y are denoted by black and white dots, respectively, and the mapping (h, k) 7→ (x, y)[h, k]
is represented by colouring the preimages of different positive integers with different levels of grey, with the
rule that a lighter grey corresponds to a lower integer. Examples for the symmetric group can be found
in [9]. In Figure 1, the diagram of (x, y), where x = 2341 and y = 3421 ∈ B4, is illustrated. Note that,
although x, y ∈ D4, we have x 6≤ y in D4, since condition (ii) of [1, Theorem 8.2.8] fails for (a, b) = (2, 1).
Figure 2 shows the diagram of (x, y), where x = 1342 and y = 3412 ∈ D4. Now, x ≤ y in D4.

Figure 1: Diagram of a pair in Bn. Figure 2: Diagram of a pair in Dn.

The support of (x, y) is

Ω(x, y) = {(h, k) ∈ R2 : (x, y)[h, k] > 0}

and the support index set of (x, y) is

IΩ(x, y) = {i ∈ 〈n〉 : (i, x(i)) ∈ Ω(x, y)},

where Ω(x, y) denotes the (topological) closure of the set Ω(x, y). A pair (x, y) ∈ W 2, with x < y, is said to
have full support if IΩ(x, y) = 〈n〉. For instance, both the pairs in Figures 1 and 2 have full support.
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3.2. Computing R̃-polynomials. In [9] we described an algorithm for computing R̃-polynomials in

the symmetric group. Following a similar strategy, R̃-polynomials can be efficiently computed in the groups
of signed permutations starting from equation (2), by choosing convenient reflection orderings.

We recall that, if we set T1 = {(i, j)(−i,−j) : i ∈ [−n], j ∈ [±(−i − 1)]} and T2 = {(i,−i) : i ∈ [−n]},
then, the set of reflections in Dn is T1 (see, e.g., [1, Prop. 8.1.5]) and the set of reflections in Bn is T1 ∪ T2

(see, e.g., [1, Prop. 8.2.5]). In both Bn and Dn we identify the reflection (i, j)(−i,−j) ∈ T1, where i ∈ [−n]
and j ∈ [±(−i − 1)], with the pair (i, j). Then, we have the following.

Proposition 3.1. A possible reflection ordering in Dn is the lexicographic order between pairs. And a

possible reflection ordering in Bn is the same as in Dn, with the reflection (i,−i) inserted between (i,−1)
and (i, 1), for all i ∈ [−n,−2], and (−1, 1) inserted as the last one.

Proof. They arise from appropriate choices of a reduce decomposition of the maximum element w0. �

For example, a reflection ordering in D4 is

(−4,−3) ≺ (−4,−2) ≺ (−4,−1) ≺ (−4, 1) ≺ (−4, 2) ≺ (−4, 3) ≺

(−3,−2) ≺ (−3,−1) ≺ (−3, 1) ≺ (−3, 2) ≺

(−2,−1) ≺ (−2, 1),

and a reflection odering in B4 is

(−4,−3) ≺ (−4,−2) ≺ (−4,−1) ≺ (−4, 4) ≺ (−4, 1) ≺ (−4, 2) ≺ (−4, 3) ≺

(−3,−2) ≺ (−3,−1) ≺ (−3, 3) ≺ (−3, 1) ≺ (−3, 2) ≺

(−2,−1) ≺ (−2, 2) ≺ (−2, 1) ≺

(−1, 1).

3.3. Symmetries. Let W be any finite Coxeter group and let w0 be its maximum. We define the
following equivalence relations between pairs (x, y) ∈ W 2, with x < y:

(x1, y1) ∼
+ (x, y) ⇔ (x1, y1) ∈ {(x, y), (x−1, y−1), (w0xw0, w0yw0), (w0x

−1w0, w0y
−1w0)}

(x1, y1) ∼
− (x, y) ⇔ (x1, y1) ∈ {(yw0, xw0), (w0y, w0x), (y−1w0, x

−1w0), (w0y
−1, w0x

−1)}

(x1, y1) ∼ (x, y) ⇔ (x1, y1) ∼
+ (x, y) or (x1, y1) ∼

− (x, y)

Then, it is known that

(x1, y1) ∼
+ (x, y) ⇒ [x1, y1] ∼= [x, y]

(x1, y1) ∼
− (x, y) ⇒ [x1, y1] ∼= −[x, y]

Moreover (see, e.g., [1, Exercise 4.10]) we have

(x1, y1) ∼ (x, y) ⇒ R̃x1,y1(q) = R̃x,y(q).

In classical Weyl groups, if (x1, y1) ∼ (x, y) then the diagram of (x1, y1) is obtained from that of (x, y)
by a certain reflection, as described for the symmetric group in [10, Figure 2]. The only exception is the
case W = Dn and n odd when, for example, xw0 = [x(1),−x(2), . . . ,−x(n)]. Then, in order to generate all

possible intervals and R̃-polynomials, we will consider diagrams up to these symmetries.

3.4. Odd signed permutation poset. In the remainder of the paper we will act on diagrams by
“deleting” or “inserting” dots. In the groups of type D, this would not always be allowed, because of the
restriction on the parity of the number of negative entries. In this subsection we present a way of bypassing
this problem. We start with defining the odd-signed permutation set :

Dodd
n = {x ∈ Bn : neg(x) is odd}.

Although Dodd
n is not a group, we can still define on it the Bruhat order as in Dn, giving the same charac-

terization of the covering relation (see the end of Section 2). More precisely, given x, y ∈ Dodd
n , we say that

x C y in the Bruhat order if and only if y = x(i, j)(−i,−j), where (i, j) is (i) a noncentral free rise of x, or
(ii) a central nonsymmetric free rise of x, or (iii) a central semifree rise of x. Then, we have the following.
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Proposition 3.2. The map ϕ : Dn → Dodd
n defined by

[x1, x2, . . . , xn]
ϕ

7−→ [−x1, x2, . . . , xn]

is an isomorphism of posets.

By Proposition 3.2, whose proof is omitted, working with the posets Dn and Dodd
n is essentially the same

thing. From now on, we will denote the even-signed permutation group by Deven
n and we will write x, y ∈ Dn

to mean either x, y ∈ Deven
n or x, y ∈ Dodd

n , with the only requirement that neg(x) ≡ neg(y) (mod 2).

3.5. Simplifications. Let W ∈ {Sn, Bn, Dn}. An index set is a subset I ⊆ 〈n〉, such that I = −I
if W ∈ {Bn, Dn}. Let x ∈ W and I be an index set. We denote by x |I the (signed) permutation whose
diagram is obtained from that of x, by considering only the dots corresponding to the indices in I, removing
the others, and renumbering the remaining indices and values. We call x |I the subpermutation of x induced
by I. We start with noting that all the information about the poset structure of [x, y] and about the

R̃-polynomial associated is contained in the support of (x, y).

Proposition 3.3. Let x, y ∈ W , with x < y. Set xΩ = x
∣∣
IΩ(x,y) and yΩ = y

∣∣
IΩ(x,y) . Then

(i) [x, y] ∼= [xΩ, yΩ];

(ii) R̃xΩ,yΩ(q) = R̃x,y(q).

Proof. For the symmetric group, it has been proved in [9, Proposition 5.2] and [10, Proposition 3.1].
For the groups Bn and Dn, the characterization of the covering relation in terms of rises ensures that the
interval [x, y] reflects a process of “unmounting” the diagram of (x, y) similar to that described in [9] for the
symmetric group and (i) follows. A similar consideration together with equation (2) implies (ii). �

It is useful to introduce the following notion of Ω-equivalence between pairs:

(x′, y′) ∼Ω (x, y) ⇔ (x′
Ω, y′

Ω) = (xΩ, yΩ).

According to Proposition 3.3, the same interval (up to poset isomorphism) and the same R̃-polinomial are
associated with all the pairs in an Ω-equivalence class.

Now, let x ∈ W and I be an index set. For (h, k) ∈ R2, we set

x[h, k] |I = |{i ∈ I : i ≤ h, x(i) ≥ k}|,

Let x, y ∈ W and I be an index set such that x(I) = y(I). For (h, k) ∈ R2, we set

(x, y)[h, k] |I = y(h, k) |I − x(h, k) |I .

Then, we set

Ω(x, y) |I = {(h, k) ∈ R2 : (x, y)[h, k] |I > 0}

Definition 3.4. Let x, y ∈ W , with x < y. Let I1 and I2 be two index sets, with IΩ(x, y) = I1 ∪ I2 and
I1 ∩ I2 = ∅, such that x(I1) = y(I1) and x(I2) = y(I2). Set xr = x |Ir

, yr = y |Ir and Ωr = Ω(x, y) |Ir
, for

r = 1, 2. Note that, necessarily, x1 < y1 and x2 < y2. We say that the pair (x, y) is trivially decomposable

into the two pairs (x1, y1) and (x2, y2) if Ω1 and Ω2 are either disjoint or if they intersect in a region whose
closure does not contain any of the dots of the diagrams of x and y.

For example, the pair (x, y) ∈ B2
4 , whose diagram is shown in Figure 1, is trivially decomposable into

the two pairs (123, 231) ∈ B2
3 and (1, 1) ∈ B2

1 . We have the following general result.

Proposition 3.5. Let x, y ∈ W , with x < y, be trivially decomposable into (x1, y1) and (x2, y2). Then

(i) [x, y] ∼= [x1, y1] × [x2, y2];

(ii) R̃x,y(q) = R̃x1,y1(q) · R̃x2,y2(q).

Proof. For Sn, it has been proved in [9, Proposition 2.16] and [10, Propositions 3.2, 3.4, 3.5]. For Bn

and Dn the proof is similar, since under the hypotheses of the proposition, the process of “unmounting” the
diagram of (x, y), that the interval [x, y] reflects, is completely independent for Ω1 and Ω2 and (i) follows.
A similar consideration together with equation (2) implies (ii). �
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3.6. Enlarging an interval. In this subsection we show how it is possible, given an interval [x, y], to
obtain all intervals of length `(x, y)+1 containing [x, y] as subinterval, in terms of the diagram of (x, y). We
start with introducing a notion of “insertion” of a dot in a diagram.

Definition 3.6. Let x ∈ Sn and h, k ∈ [n + 1]. The permutation obtained from x by inserting the dot

(h, k), denoted by x(h,k), is the only permutation x̂ ∈ Sn+1 satisfying (i) x̂(h) = k, (ii) x̂
∣∣
[n+1]\{h} = x.

Similarly, for x ∈ Bn (resp. Dn), h ∈ [n + 1] and k ∈ [±(n + 1)], the signed permutation obtained from
x by inserting the dot (h, k), denoted by x(h,k), is the only permutation x̂ ∈ Bn+1 (resp. Dn+1 or Dodd

n+1,

depending on whether k > 0 or k < 0) satisfying (i) x̂(h) = k (thus x̂(−h) = −k), (ii) x̂
∣∣
[±(n+1)]\{h,−h} = x.

If we consider the pairs (x, y) whose diagrams are shown in Figures 1 and 2, then the diagrams of the
pairs

(
x(3,−3), y(3,−3)

)
are illustrated in Figures 3 and 4, respectively. Note that the signed permutations

x(3,−3), y(3,−3) shown in Figure 4 belong to Dodd
5 and, according to the considerations following Proposi-

tion 3.2, we still write
(
x(3,−3), y(3,−3)

)
∈ D5.

Figure 3: Inserting a dot in Bn. Figure 4: Inserting a dot in Dn.

In particular, we are interested in inserting dots out of the support, as it happens in the diagrams in
Figures 3 and 4. In this case we obtain a pair which is in the same Ω-equivalence class as the originary pair.
Then, we have the following result, which is an immediate consequence of Proposition 3.3.

Corollary 3.7. Let x, y ∈ W, with x < y, and (h, k) ∈ [n + 1]× 〈n + 1〉, with (h, k) /∈ Ω(x(h,k), y(h,k)).

(i) [x, y] ∼=
[
x(h,k), y(h,k)

]
;

(ii) R̃x,y(q) = R̃x(h,k),y(h,k)(q).

Let x, y ∈ W , with x < y. The intervals of length `(x, y) + 1 containing [x, y] are exactly those of the
form [x, z] (if y 6= w0), with z = ct(i,j)(y) and those of the form [w, y] (if x 6= id), with w = ict(i,j)(x). In
both cases we say that the new pair, (x, z) or (w, y), is obtained from (x, y) by

(i) an external move, if {i, j} ⊆ 〈n〉 \IΩ(x, y);
(ii) an internal move, if {i, j} ⊆ IΩ(x, y);
(iii) an enlarging move, if |{i, j} ∩ IΩ(x, y)| = 1.

In case (iii), if {i, j}\IΩ(x, y) = {h}, then we also say that the enlarging move uses the dot (h, x(h)). Also, if
(x, y) is a pair with full support, (x′, y′) is any pair Ω-equivalent to (x, y) and (w, z) is obtained from (x′, y′)
by one of the three kinds of moves described, then we say that (w, z) is obtained from (x, y) as well.

External moves can be easily managed by the following result.

Proposition 3.8. Let x, y ∈ W , with x < y. Let (w, z) be obtained from (x, y) by an external move and

suppose both (x, y) and (w, z) have full support. Then (w, z) is trivially decomposable into (x, y) and a pair

(a, b), with a C b. In particular (i) [w, z] = [x, y] × {0, 1}; (ii) R̃w,z(q) = qR̃x,y(q).

We need one last definition.

Definition 3.9. Let W ∈ {Sn, Bn, Dn} and x, y ∈ W , with x < y, be such that (x, y) has full support.
The enlarging set of (x, y), denoted by Enl(x, y), is the union of all the pairs with full support obtained from
(x, y) by internal moves and enlarging moves.
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4. Main result

The combinatorial invariance of Kazhdan-Lusztig polynomials for intervals up to a certain length is

equivalent to that of the R-polynomials (or their counterpart, the R̃-polynomials) for the same intervals.

We will prove our main result by showing that the R̃-polynomials are combinatorial invariants. First of all,
note that an interval [x, y] does not contain a 2-crown if and only if a`(x, y) = `(x, y) and, by equation (3),

this happens if and only if R̃x,y(q) = q`(x,y). Thus, we only need to consider intervals containing 2-crowns.

Let FA = {Sn : n ≥ 2}, FB = {Bn : n ≥ 1} and FD = {Dn : n ≥ 2}.

Definition 4.1. Let F ∈ {FA,FB,FD}. The essential sets of F are recursively defined by

ES3(F) = {(x, y) ∈ W 2 : W ∈ F , [x, y] is a 2-crown and (x, y) has full support}/ ∼

and, for k ≥ 4

ESk(F) =
[⋃

{Enl(x, y) : [(x, y)]∼ ∈ ESk−1(F)}
]
/ ∼ .

The sets ES3(F) can be easily determined and they are as follows:

ES3(FA) = {(123, 321)},

ES3(FB) = {(123, 321), (213, 31 2), (3 12, 21 3), (3 21, 12 3), (12, 12), (12, 2 1)},

ES3(FD) = {(123, 321), (213, 31 2), (3 12, 21 3), (3 21, 12 3), (123, 32 1), (213, 31 2), (312, 21 3)},

where, for simplicity, we have identified every equivalence class with one of its elements.

theorem 4.2. Let F ∈ {FA,FB,FD} and k ≥ 3. The essential set ESk(F) contains, up to ∼, all

possible pairs of length k, in Coxeter groups in F , which have full support and are not trivially decomposable,

whose corresponding interval [x, y] contains a 2-crown.

Proof. We proceed by induction on k. For k = 3, the result is true by definition. Assume k ≥ 4. It is
easy to prove that all the pairs in ESk(F) have the required properties. Now, let (x, y) be a pair of length k
which has full support and is not trivially decomposable, such that [x, y] contains a 2-crown. We want to show
that [(x, y)]∼ ∈ ESk(F). As one can easily check, it is always possible to find an atom z (or a coatom w) of
[x, y] such that (z, y) (or (x, w)) is still not trivially decomposable and [z, y] (or [x, w]) still contains a 2-crown.
Let z be an atom of [x, y] with this properties (the case of a coatom w is similar). Now, let zΩ = z

∣∣
IΩ(z,y)

and yΩ = y
∣∣
IΩ(z,y) . Then, (zΩ, yΩ) has length k − 1, has full support, is not trivially decomposable and

[zΩ, yΩ] contains a 2-crown. By the induction hypotesis, this implies [(zΩ, yΩ)]∼ ∈ ESk−1(F). Also note
that (x, y) is necessarily obtained from (zΩ, yΩ) by either an internal move or an enlarging move. Thus, by
definition, (x, y) ∈ Enl(zΩ, yΩ) and [(x, y)]∼ ∈ ESk(F). �

We can now state and prove the main result of this work.

theorem 4.3. The Kazhdan-Lusztig polynomials are combinatorial invariants for intervals up to length

6 in Coxeter groups of type B and D and for intervals up to length 8 in Coxeter groups of type A.

Proof. The combinatorial invariance is known to hold for intervals up to length 4 in all Coxeter groups
and in [10] it has been established for intervals of length 5 and 6 in the symmetric group. Moreover, by
equation (1), if the combinatorial invariance is true for intervals up to a given odd length `, then it is also

true for intervals of length `+1. So we only need to prove the combinatorial invariance of the R̃-polynomials
for intervals of length 5 in the groups of signed permutations and for those of length 7 in the symmetric
group. As already observed, we only need to consider intervals containing 2-crowns. By Proposition 3.3, we
may only consider pairs which have full support. Pairs which are trivially decomposable can be managed by
Proposition 3.5. Then, by Theorem 4.2, we only need to consider the pairs in the sets ESk(F).

For the remainder of the proof, we need the assistance of Maple computation. In fact, the essential
sets have been generated, according to Definition 4.1, by a Maple program. For the symmetric group it has
been done up to length 7 and for the groups of signed permutations up to length 5. The cardinalities of the
essential sets are as follows:
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k |ESk(FA)| |ESk(FB)| |ESk(FD)|

3 1 6 7

4 4 209 158

5 47 9543 3942

6 913

7 22400

For each pair (x, y) in the essential sets ES7(FA), ES5(FB) and ES5(FD), the poset structure of the

interval [x, y] has been determined, and the corresponding R̃-polynomial has been computed, by our own
Maple programs, based on algorithms that use the characterizations of the Bruhat order, equation (2) and the
reflection orderings mentioned in the previous section. Then, the pairs have been grouped in isomorphism
classes, with the help of Stembridge’s Maple package for posets [14], which includes a fast algorithm for

isomorphism testing. Finally, the combinatorial invariance of the R̃-polynomials for these pairs has been
checked. The results of the computation are summarized in Tables 1, 2 and 3, described later.

Note that it may happen that a pair (x, y), which is not trivially decomposable, has a corresponding
interval which is reducible as a poset (that is, direct product of smaller posets), say [x, y] ∼= [x, z] × [z, y].
Then, consistently with Proposition 3.5, it has to be proved that, whenever this happens, the factorization

R̃x,y(q) = R̃x,z(q) · R̃z,y holds. This has also been checked by Maple computation. �

In Tables 1, 2 and 3 (the last one in a short version) all isomorphism types of intervals associated with
pairs in the essential sets ES5(FD), ES5(FB) and ES7(FA), respectively, are listed. They are grouped by

the value of the R̃-polynomial and, within each group, they are listed for lexicographically nondecreasing
f -vector. For each isomorphism type a representative pair (x, y) is indicated. Self-dual intervals and reducible
intervals are marked, and, for each group, the expression of the R-polynomial is also indicated.

Note that some of the reducible intervals associated with trivially decomposable pairs might not have
been considered. Nevertheless, this is not the case, since, by Maple computation, it has also been checked
that all possible intervals containing 2-crowns that are direct product of smaller intervals belong to one of
the isomorphism classes listed in the tables. Moreover, by an unpublished result of Dyer, we have that a
Bruhat interval is a lattice if and only if it does not contain a 2-crown. We can conclude that Tables 1, 2
and 3 contain a complete classification, up to isomorphism, of Bruhat intervals which are not lattices, for
the respective lengths and types.

The diagrams of the representative pairs are finally depicted in Figures 5, 6 and 7.

type (x, y) f -vector s.d. red. eRx,y(q) Rx,y(q)

1. (1 2 3, 1 3 2) (3, 5, 6, 4) q5 + 2q3 + q (q − 1)(q2 − q + 1)2

2. (1 2 3, 2 1 3) (3, 5, 5, 3)
√

q5 + 2q3 (q − 1)3(q2 + 1)

3. (1 2 3 4, 2 4 1 3) (4, 7, 7, 4)
√ √

4. (1 2 3 4, 1 2 4 3) (4, 8, 9, 5)
√

5. (1 2 3 4, 1 4 3 2) (4, 9, 10, 5)

6. (2 1 3 4, 4 3 2 1) (4, 10, 12, 6)

7. (1 2 3 4, 3 4 2 1) (5, 10, 10, 5) q5 + q3 (q − 1)3(q2 − q + 1)

8. (1 2 3 4, 1 4 3 2) (5, 10, 11, 6)

9. (1 2 3 4, 1 2 4 3) (5, 11, 14, 8)

10. (1 2 3 4, 1 4 3 2) (5, 12, 13, 6)

11. (1 3 2 4, 1 4 2 3) (5, 12, 14, 7)

12. (1 4 2 3, 1 2 4 3) (7, 15, 16, 8)

Table 1. Isomorphism types of pairs in ES5(FD).
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type (x, y) f -vector s.d. red. eRx,y(q) Rx,y(q)

1. (1 2 3, 3 2 1) (3, 5, 6, 4)

2. (1 2 3, 1 2 3) (3, 6, 7, 4) q5 + 2q3 + q (q − 1)(q2 − q + 1)2

3. (2 1 3, 2 1 3) (4, 7, 7, 4)
√

4. (3 1 2, 1 3 2) (3, 4, 4, 3)
√ √

5. (1 2 3, 2 3 1) (3, 5, 5, 3)
√

6. (1 2 3, 3 2 1) (3, 5, 6, 4)

7. (1 3 2, 1 2 3) (3, 5, 6, 4) q5 + 2q3 (q − 1)3(q2 + 1)

8. (1 2 3, 3 2 1) (3, 6, 6, 3)
√

9. (1 2 3, 2 3 1) (3, 6, 7, 4)

10. (1 3 2, 1 3 2) (4, 7, 7, 4)
√

11. (2 1 3, 1 3 2) (4, 7, 7, 4)

12. (2 1 3, 2 1 3) (4, 7, 7, 4)
√ √

13. (1 2 3 4, 4 2 1 3) (4, 8, 9, 5)
√

14. (1 2 3 4, 3 4 1 2) (4, 9, 10, 5)

15. (1 2 4 3, 4 2 3 1) (4, 10, 12, 6)

16. (2 1 3 4, 4 2 1 3) (5, 10, 10, 5)
√ √

17. (2 1 3 4, 4 2 3 1) (5, 10, 10, 5)

18. (1 2 3 4, 1 4 2 3) (5, 10, 10, 5)
√

19. (2 1 3 4, 4 3 1 2) (5, 10, 11, 6)

20. (1 3 2 4, 1 4 3 2) (5, 10, 11, 6)

21. (3 1 2 4, 4 3 1 2) (5, 11, 12, 6)

22. (3 1 2 4, 4 3 1 2) (5, 11, 12, 6)

23. (4 2 3 1, 3 2 1 4) (5, 11, 12, 6)

24. (2 1 3 4, 3 4 2 1) (5, 11, 12, 6)

25. (1 3 2 4, 1 4 3 2) (5, 11, 12, 6)

26. (1 2 3 4, 4 3 2 1) (5, 11, 13, 7)

27. (1 2 3 4, 1 2 4 3) (5, 11, 14, 8)

28. (1 2 3 4, 1 4 3 2) (5, 12, 13, 6)

29. (4 1 3 2, 3 1 2 4) (5, 12, 13, 6) q5 + q3 (q − 1)3(q2 − q + 1)

30. (2 4 1 3, 2 3 4 1) (5, 12, 13, 6)

31. (2 4 1 3, 2 3 4 1) (5, 12, 14, 7)

32. (1 3 2 4, 1 4 2 3) (5, 12, 14, 7)

33. (3 1 2 4, 4 3 2 1) (6, 12, 12, 6)
√

34. (1 3 2 4, 4 3 1 2) (6, 12, 12, 6)

35. (2 4 1 3, 3 4 2 1) (6, 13, 13, 6)
√

36. (1 2 4 3, 3 4 2 1) (6, 13, 13, 6)

37. (4 3 2 1, 3 2 1 4) (6, 13, 13, 6)

38. (2 3 1 4, 2 4 3 1) (6, 13, 13, 6)

39. (2 1 4 3, 4 1 3 2) (6, 13, 13, 6)

40. (3 2 1 4, 3 4 2 1) (6, 13, 13, 6)

41. (4 3 1 2, 1 2 4 3) (6, 13, 14, 7)

42. (1 4 2 3, 1 3 4 2) (6, 13, 14, 7)

43. (3 1 2 4, 4 3 2 1) (6, 13, 14, 7)

44. (3 2 1 4, 4 3 2 1) (6, 14, 15, 7)

45. (1 4 3 2, 1 2 4 3) (6, 14, 15, 7)

46. (1 4 2 3, 1 2 4 3) (7, 15, 16, 8)

Table 2. Isomoprhism types of pairs in ES5(FB).



COMBINATORIAL INVARIANCE OF KAZHDAN-LUSZTIG POLYNOMIALS

types eRx,y(q) Rx,y(q)

1–2 q7 + 3q5 + 3q3 + q (q − 1)(q2 − q + 1)3

3–5 q7 + 3q5 + 2q3 (q − 1)3(q2 + 1)(q2 − q + 1)

6–11 q7 + 3q5 + q3 (q − 1)3(q4 − q3 + q2 − q + 1)

12–57 q7 + 2q5 + q3 (q − 1)3(q2 − q + 1)2

58–89 q7 + 2q5 (q − 1)5(q2 + 1)

90–217 q7 + q5 (q − 1)5(q2 − q + 1)

Table 3. Isomorphism types of pairs in ES7(FA).

Figure 5. Representative diagrams of pairs in ES5(FD).

Figure 6. Representative diagrams of pairs in ES5(FB).
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Figure 7. Representative diagrams of pairs in ES7(FA).
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