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Séries Formelles et Combinatoire Algébrique
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Abstract. We study a one-parameter family of vector-valued polynomials associated to each simple Lie
algebra. When this parameter q equals −1 one recovers Joseph polynomials, whereas at q cubic root of
unity one obtains ground state eigenvectors of some integrable models with boundary conditions depending
on the Lie algebra; in particular, we find that the sum of its entries is related to numbers of Alternating
Sign Matrices and/or Plane Partitions in various symmetry classes.

Résumé. Nous étudions une famille à un paramètre de polynômes à valeurs vectorielles qui est associée à
chaque algèbre de Lie simple. Quand ce paramètre q vaut −1 on retrouve les polynômes de Joseph, tandis
que quand q est racine cubique de l’unité on obtient les états fondamentaux de certain modèles intégrables
avec des conditions aux bords dépendant de l’algèbre de Lie ; en particulier, nous trouvons que la somme

de ses composantes est reliée aux nombres de Matrices de Signe Alterné et/ou de Partitions Planes dans
diverses classes de symétrie.

1. Introduction

Recently, a remarkable connection between integrable models and combinatorics has emerged. It first
appeared in a series of papers concerning the XXZ spin chain and the Temperley–Lieb (TL) loop model
[1, 2] and which culminated with the so-called Razumov–Stroganov (RS) conjecture [3]. One of the main
observations of [1], a weak corollary of the RS conjecture, is that the sum of entries of the properly nor-
malized ground state vector of the TL(1) loop model is (unexpectedly!) equal to the number of Alternating
Sign Matrices. This result was eventually proved in [4] by using the integrability of the TL loop model in
the following way: the model is generalized by introducing N complex numbers (spectral parameters, or
inhomogeneities) in the problem, where N is the size of the system. The ground state entries become poly-
nomials in these variables, and integrability provides many new tools for analyzing them, leading eventually
to the exact computation of their sum, identified as the so-called Izergin–Korepin (IK) determinant, known
to specialize to the number of Alternating Sign Matrices in the homogeneous limit [5]. Note that in this
work, the meaning of the spectral parameters is not very transparent; in particular, it is unclear how to
generalize the full RS conjecture in their presence.

Next, it was observed in [6] that the polynomials obtained above really belong to a one-parameter family
of solutions of a certain set of linear equations, in which the parameter q has been set equal to a cubic root
of unity. This observation is not obvious because the equations for generic q are not a simple eigenvector
equation; in fact, as explained in [7], they are precisely the quantum Knizhnik–Zamolodchikov (qKZ) equa-

tions at level 1 for the algebra Uq(ŝl(2)). Furthermore, in the “rational” limit q → −1, these polynomials
have a remarkable geometric interpretation: they are equivariant Hilbert polynomials (or “multidegrees”) of
AN−1 orbital varieties M2 = 0 ([7], see also [8]), which are extensions of the Joseph polynomials [11]. Note
that here, the spectral parameters quite naturally appear as the basis of weights of gl(N). In [7], these ideas

were generalized to higher algebras Uq(ŝl(k)), which correspond to the orbital varieties Mk = 0.
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Here, we pursue a different type of generalization: we investigate orbital varieties corresponding to the

other infinite series of simple Lie algebras: Br, Cr, Dr; but we stick to the Uq(ŝl(2)) case by choosing
the orbital varieties M2 = 0, M a complex matrix in the fundamental representation. Indeed, we show
below that such orbital varieties are related to the same loop model, but with different boundary conditions

(corresponding to variants of the Temperley–Lieb algebra). Furthermore, one can now q-deform the resulting
polynomials to produce solutions of qKZ equations of type B, C, D and set q to be a cubic root of unity.
Taking the homogeneous limit, the entries become integer numbers, which we conjecture to be related to
symmetry classes of Alternating Sign Matrices and/or Plane Partitions; in particular we identify the sums
of entries.

In what follows we state most results without proofs; some will appear in a joint paper with A. Knutson
[15] on a closely related subject.

2. General setup

2.1. Orbital varieties. Let g be a simple complex Lie algebra of rank r, b a Borel subalgebra. b = t⊕n

where t is the corresponding Cartan subalgebra and n is the space of nilpotent elements of b. B and T are
Borel and Cartan subgroups. Let W denote the Weyl group of g, and sα its standard generators, where α
runs over the set of simple roots of g.

Fixing an orbit G·x, with x ∈ n and G acting by conjugation, one can consider the irreducible components
of b ∩ (G · x), which are called orbital varieties.

Even though much of what follows can be done for any orbital varieties, we focus below on the following
special case: we fix an irreducible representation ρ (of dimension N) and consider the scheme E = {x ∈ b |

ρ(x)2 = 0}. The underlying set is precisely a b ∩ (G · x), where x is any element of E such that ρ(x) is of
maximal rank. In some sense, its components are the “simplest possible” orbital varieties.

2.2. Hotta construction. It is known that there exists a representation of the Weyl group W on the
vector space V of formal linear combinations of orbital varieties (Springer/Joseph representation); for each
G-orbit, it is an irreducible representation. We use the following explicit form of the representation: note
that orbital varieties are invariant under T ×C×, where T acts by conjugation and C× acts by overall scaling.
We can therefore consider equivariant cohomology H∗

T×C×(·) and in particular via the inclusion map from

each orbital variety π to the space n, the unit of H∗
T×C×(π) is pushed forward to some cohomology class Ψπ

in H∗
T×C×(n) = C[t, A], that is a polynomial in r + 1 variables α1, . . ., αr, A (the r simple roots plus the C×

weight), sometimes called multidegree of π. Suppressing the C× action, that is setting A = 0, one recovers
the Joseph polynomials [11].

The way that W acts on these polynomials can be described explicitly, by extending slightly the results
of Hotta [12] to include the additional C× action. One starts by associating to each simple root α a certain
geometric construction, which we briefly recall. For x ∈ b write x =

∑
α xαeα where α runs over positive

roots, eα ∈ g being a vector of weight α. Define bα = {x ∈ b | xα = 0}, and Lα to be Lévy subgroup whose
Lie algebra is b ⊕ Ce−α. Starting from an orbital variety π, we distinguish two cases:

• π ⊂ bα. Then set sαπ = π.
• π 6⊂ bα. Then let Lα acts by conjugation: the top-dimensional components of Lα ·(π∩bα) are again

orbital varieties; set sαπ = −π −
∑

π′ µα
π′

π π′ where µα
π′

π is the multiplicity of π′ in Lα · (π ∩ bα).

These elementary operations have a counterpart when acting on multidegrees, and a simple calculation shows
that both cases are covered by a single formula:

(2.1) sαΨπ = (−τα + A∂α)Ψπ

where τα is the reflection orthogonal to the root α in C[α1, . . . , αr, A], and ∂α = 1
α (τα − 1) is the associated

divided difference operator, whereas on the left hand side sα implements right action on the Ψπ, namely
sαΨπ := −Ψπ −

∑
π′ µα

π′

π Ψπ′ . One can check that sα 7→ −τα +A∂α is a representation of the Weyl group W
on polynomials. Note that at A = 0, we recover the natural action of W (up to a sign, with our conventions).

2.3. Yang–Baxter equation and integrable models. Let us define the operator

(2.2) Rα(u) :=
A − usα

A + u
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which acts in the space V ⊗ C[α1, . . . , αr, A], u being a formal parameter. Rewriting slightly the relation
(2.1) above we find that τα acts as Rα(α). Using the fact that τα, just like the sα, satisfy the Weyl group
relations, we find that the operators ταRα(α) also satisfy those. In the case of non-exceptional Lie algebras,
there are only 2 types of edges in the Dynkin diagram, and therefore we have Coxeter relations of the form
(sαsβ)mαβ = 1, where mαβ = 1, 2, 3, 4 depending on whether α = β, there is no edge, a single or a double
edge between α and β. Writing these relations for ταRα and eliminating the τα, we find that relations with
mαβ = 1, 3, 4 correspond respectively to the unitarity equation:

(2.3) Rα(α)Rα(−α) = 1 ,

the Yang–Baxter equation:

(2.4) Rα(α)Rβ(α + β)Rα(β) = Rβ(β)Rα(α + β)Rβ(α) α β

and the boundary Yang–Baxter (or reflection) equation:

(2.5) Rα(α)Rβ(β + α)Rα(α + 2β)Rβ(β) = Rβ(β)Rα(α + 2β)Rβ(β + α)Rα(α) α β

whereas the case mαβ = 2 expresses a simple commutation relation for distant vertices. Indeed one recognizes
in Rα(u) a standard form of the rational solution of the Yang–Baxter equation, the parameter u playing
the role of difference of spectral parameters. Thus the multidegrees Ψα are closely connected to integrable
models with rational dependence on spectral parameters, as will be discussed now.

Before doing so, let us remark that in the special case investigated here of orbital varieties associated to
M2 = 0, the sα obey more than just the Coxeter relations. In the Ar case they actually generate a quotient
of the symmetric group algebra Sr+1 known as the Temperley–Lieb algebra TLr+1(2) (here 2 is the value
of the parameter in the definition of the algebra, as will be explained below). The same type of phenomena
will be described for other simple Lie algebras, and will lead to variants of the Temperley–Lieb algebra; in
particular, the “bulk” (i.e. everything but a finite number of edges at the boundary) of the Dynkin diagrams
being sequences of simple edges, these variants will only differ at the level of “boundary conditions” of the
model.

2.4. Affinization and rational qKZ equation. Let us now discuss the meaning of the equation

(2.6) Rα(α)Ψ = ταΨ

where τα is the reflection associated to the root α acting on the “spectral parameters” α1, . . ., αr, Rα(α)
is a certain linear operator defined above acting in the space V ⊗ C[α1, . . . , αr, A] and Ψ =

∑
π π ⊗ Ψπ is a

vector in that space.
When Rα(u) is the R-matrix (or boundary R-matrix) of some integrable model, such equations are

satisfied by eigenvectors of the corresponding integrable transfer matrix. More generally, these equations
appear in the context of the quantum Knizhnik–Zamolodchikov (qKZ) equation, in connection with the
representation theory of affine quantum groups [13]. In either case, it is known that we need an additional
equation to fix the Ψπ entirely.

Define Ŵ to be the semi-direct product of W and of the weight lattice of g. It contains as a finite index
subgroup the usual affine Weyl group defined as the Coxeter group of the affinized Dynkin diagram. Just
like the affine Weyl group, it has a natural action on t and therefore on C[α1, . . . , αr, A] which extends the
action of W generated by the reflections τi; by definition, in this representation, an element of the weight
lattice acts as translation in t of the weight multiplied by 3A (3 = l + ȟ where l = 1 is the level of the qKZ
equation and ȟ = 2 is the dual Coxeter number of sl(2)).

Then we claim that one can extend the representation of W on V ⊗ C[α1, . . . , αr, A] (the operators

ταRα(α)) into a representation of Ŵ , in such a way that each element of Ŵ is the product of its natural
action on C[α1, . . . , αr, A] and of a C[α1, . . . , αr, A]-linear operator. Describing here the geometric procedure
that leads to this action is beyond the scope of this paper. The action will however be described explicitly
in each of the cases below. An important property is that if one sets A = 0 the representation of Ŵ factors

through the projection Ŵ → W . So the C× action actually produces the affinization.
Imposing that Ψ be invariant under the action of the whole group Ŵ leads to a full set of equations,

which are precisely equivalent to the so-called rational qKZ equation (or more precisely, a generalization of
it for arbitrary Dynkin diagram, the original qKZ equation corresponding to the case Ar) at level 1; and it
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turns out that they have a unique polynomial solution of the prescribed degree (up to multiplication by a
scalar).

2.5. q-deformation and Razumov–Stroganov point. The integrability suggests how to q-deform
the above construction. Indeed, we have considered thus far R-matrices that form so-called rational solutions
of the Yang–Baxter Equation, and Ψ’s that are solutions of the rational qKZ equation. It is known however
that the trigonometric R-matrices are a special degeneration of a one-parameter family of trigonometric

solutions of the Yang–Baxter Equation, depending on a parameter q. Setting q = −e−~A/2, one customarily
uses exponentiated “multiplicative” spectral parameters of the form e−~αi . We then look for polynomial
solutions Ψ of these parameters, to the corresponding trigonometric qKZ equations. The rational solutions
are then recovered from the trigonometric ones via the limit ~ → 0, at the first non-trivial order in ~. The
details of the bulk and boundary R-matrices will be given below for the cases Ar, Br, Cr and Dr. We thus
obtain, for any q, a representation of the group Ŵ , the W relations satisfied by the ταRα(α) and more

generally the Ŵ relations being undeformed.
In terms of the new variables e−~αi living in T , the natural action of an element of the weight lattice

ω (as the abelian subgroup of Ŵ ) is the multiplication by q6ω. Since for all simple Lie algebras, ω has
half-integer coordinates, we reach the important conclusion that when q3 = 1, this action becomes trivial.
Therefore, all operators associated to the weight lattice by the procedure outlined in the previous section
become C[α1, . . . , αr, A]-linear (i.e. correspond to finite-dimensional operators on V after evaluation of the
parameters α1, . . ., αr, A). In this case they are simply the scattering matrices of [19], and they commute
with the usual (inhomogeneous) integrable transfer matrix of the model. This implies that Ψ is an eigenvector
of the latter; in fact, we can call it “ground state eigenvector” because in the physical situation where the
transfer matrix elements are positive, the Perron–Frobenius theorem applies and the eigenvalue 1 of Ψ is the
largest eigenvalue in modulus.

The value q = e2iπ/3 (also called “Razumov–Stroganov point”) is henceforth quite special and deserves
a particular study. In particular, in the homogeneous limit where the spectral parameters αi are specialized
to zero, Ψ can be normalized so that its entries are all non-negative integers, and we are interested in their
combinatorial significance, in relation to the counting of Alternating Sign Matrices and/or Plane Partitions.
We do not claim to have a full understanding of the general correspondence principle between simple Lie
algebras and these combinatorial problems, but we will perform a case-by-case study for Ar, Br, Cr and Dr.

A last remark is in order. As we shall see, it is simple to see that the solutions Ψ to the A, B, C, D
qKZ equations obey recursion relations, that allow to obtain the rank r case from rank r + 1, hence we will
content ourselves with the detailed description for r with a given parity, namely A2n−1, B2n, C2n+1, D2n+1.

3. Ar case

We review the Ar case, already explored in [7]. We set αi = zi − zi+1, i = 1, . . . , r. The fact that there
are r + 1 ≡ N of these new variables zi, the spectral parameters, as opposed to the r simple roots, is a
reflection of the usual embedding sl(N) ⊂ gl(N). b (resp. n) is simply the space of upper triangular (resp.
strictly upper triangular) matrices of size N , and the orbital varieties under consideration are the irreducible
components of the scheme {M ∈ n | M2 = 0}. We also restrict ourselves to the case of N = 2n even, which
is technically simpler.

3.1. Orbital varieties and Temperley–Lieb algebra. In general, sl(N) nilpotent orbits are classi-
fied by their Jordan decomposition type, which can be expressed as a Young diagram; the orbital varieties
are then indexed by Standard Young Tableaux (SYT). The condition M2 = 0 ensures that only Young
diagrams with at most 2 rows can appear (blocks in the Jordan decomposition are of size at most 2), and
it is easy to check that all orbits are in the closure of the largest orbit, whose Young diagram is of the form
(n, n). It is convenient to describe the corresponding SYT by “link patterns”, that is N points on a line
connected in the upper-half plane via n non-intersecting arches, see fig. 1. The numbers in the first (resp.

second) row of the SYT are the labels of the openings (resp. closings) of the arches. There are (2n)!
n!(n+1)! such

configurations.
In this language, one has a rather convenient description of orbital varieties [25, 26], which we mention

for the sake of completeness. Indeed, to each orbital variety π we associate the upper triangular matrix π<

with π<
ij = 1 if points labelled i and j are connected by an arch, i < j, 0 otherwise. Then π = B · π<,
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4 6

1 2 5

3
→

1 2 3 4 5 6

Figure 1. A Standard Young Tableau and the corresponding link pattern.

e4
1 2 3 4 5 6

=

1 2 3 4 5 6

=
1 2 3 4 5 6

e2
1 2 3 4 5 6

=

1 2 3 4 5 6

= β
1 2 3 4 5 6

Figure 2. Action of the Temperley–Lieb algebra TL(β) on link patterns.

B acting by conjugation. Equivalently, π is given by the following set of equations: (i) M2 = 0 and (ii)
rij(M) ≤ rij(π

<), i, j = 1, . . . , N , where rij is the rank of the i × j lower-left rectangle.
It is equally simple to describe the action of the Weyl group, namely the symmetric group SN . Rather

than the generators corresponding to the simple roots: si ≡ sαi
, i = 1, . . . , r used so far, it proves simpler

to consider the action of the projectors ei = 1− si in the symmetric group algebra. The operator ei acts on
link patterns π by connecting the arches ending at i and i + 1 and creates a new little arch between these 2
points; this action is described on Fig. 2. When a closed loop is formed, it is erased but contributes a weight
β = 2. The q-deformed version of this is obtained by attaching a weight β = −(q + q−1) to each erased loop,
thus leading to the following (pictorially clear) relations:

(3.1) e2
i = βei ei = eiei±1ei [ei, ej ] = 0 |i − j| > 1

all indices taking values in 1, . . . , r. These are the defining relations of the Temperley–Lieb algebra TLr+1(β).
When q = −1, i.e. β = 2, it is simply a quotient of the symmetric group algebra. Alternatively, the deformed
generators si = −q−1 − ei satisfy the usual relations of the Hecke algebra (of which the Temperley–Lieb
algebra is a quotient).

In what follows, one special element of TLN(β) will be needed: it is the cyclic rotation S. Its effect is
to rotate the endpoints of the link patterns: 1 → 2 → · · · → N → 1 without changing their connectivity. It
can also be expressed as: S = qn−2s1 · · · sN−1.

3.2. qKZ equation. For each simple root αi, we have the trigonometric R-matrix:

(3.2) Ri(w) ≡ Rαi
(w) =

(qw − q−1) + (w − 1)ei

q − q−1w
,

where the ei = −q−1 − si generate TLN(β) and act in the space of link patterns as explained above. We
first write the system of equations:

(3.3) Ri(wi+1/wi)Ψ = τiΨ i = 1, . . . , N − 1

where τi ≡ ταi
acts by interchanging multiplicative spectral parameters wi := e−~zi and wi+1 in the poly-

nomial Ψ of the w’s, homogeneous of degree n(n − 1).
These equations are supplemented by the “affinized” equation satisfied by Ψ. Since the affine Dynkin

diagram A
(1)
r is a circular chain, this equation quite naturally involves the cyclic rotation S. Define the

operator ρ on C[w1, . . . , wN ] which shifts the variables wi according to the rule: wi → wi+1, i = 1, . . . , N −1
and wN → q6w1. Then the additional equation is

(3.4) q3(n−1)S−1Ψ = ρΨ

Together with this equation, the above system forms the so-called level one qKZ equation.
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We claim that the Ri := τiRi(wi+1/wi) and S := q3(1−n)ρS generate together Ŵ . In order to see that,
it is sufficient to build the N generators Ti of the abelian subgroup (the lattice of weights). They are given
by Ti = Ri−1Ri−2 · · ·R1SRN−1 · · ·Ri+1Ri, i = 1, . . . , N . The original definition of the qKZ equation is in
fact the eigenvector equation for these “scattering” matrices; with reasonable assumptions it is equivalent
to the above system. Also, note that if one defines RN := S−1R1S, then the Ri, i = 1, . . . , N generate the
usual affine Weyl group (a subgroup of order N of Ŵ ).

The minimal degree polynomial solution of the level one qKZ equation was obtained in [6, 7], and is
characterized by its “base” entry Ψπ0

corresponding to the link pattern π0 that connects points i ↔ 2n+1−i,
with the value

(3.5) Ψπ0
=

∏

1≤i<j≤n

(qwi − q−1wj)
∏

n+1≤i<j≤2n

(qwi − q−1wj)

in which all factors are a direct consequence of the τiΨ = RiΨ equations. It is then easy to prove that all
the other entries of Ψ may be obtained from Ψπ0

in a triangular way.
Example: at N = 6, there are 5 link patterns. The minimal degree polynomial solution of the level one

qKZ equation reads:

Ψ
1 2 3 4 5 6

= (qw1 − q−1w2)(qw2 − q−1w3)(qw1 − q−1w3)(qw4 − q−1w5)(qw5 − q−1w6)(qw4 − q−1w6)

Ψ
1 2 3 4 5 6

= (qw1 − q−1w2)(qw3 − q−1w4)(qw5 − q−1w6)

×
(
(w1 + w2)(q

2w3w4 − q−2w5w6) − (w3 + w4)(q
4w1w2 − q−4w5w6) + (w5 + w6)(q

2w1w2 − q−2w3w4)
)

Ψ
654321

= (qw2 − q−1w3)(qw2 − q−1w4)(qw3 − q−1w4)(qw5 − q−1w6)(q
−2w6 − q2w1)(q

−2w5 − q2w1)

Ψ
1 2 3 4 5 6

= (qw1 − q−1w2)(qw3 − q−1w4)(qw4 − q−1w5)(qw3 − q−1w5)(q
−2w6 − q2w1)(q

−2w6 − q2w2)

Ψ
654321

= (qw2 − q−1w3)(qw4 − q−1w5)(q
−2w6 − q2w1)

×
(
(q3w1 + q−3w6)(q

2w2w3 − q−2w4w5) − (w2 + w3)(qw1w6 − q−1w4w5) − (w4 + w5)(qw2w3 − q−1w1w6)
)

Performing the rational limit ~ → 0, zi = e−~wi , q = −e−~A/2 yields the following multidegrees:

Ψ
1 2 3 4 5 6

= (A + z1 − z2)(A + z2 − z3)(A + z1 − z3)(A + z4 − z5)(A + z5 − z6)(A + z4 − z6)

Ψ
1 2 3 4 5 6

= (A + z1 − z2)(A + z3 − z4)(A + z5 − z6)
(
4A3 + 3A2(z1 + z2 − z5 − z6) +

+A(2(z1z2 − 2z3z4 − z1z5 − z2z5 − z1z6 − z2z6 + z5z6) + (z3 + z4)(z1 + z2 + z5 + z6))

+(z1 + z2)(z5z6 − z3z4) + (z3 + z4)(z1z2 − z5z6) + (z5 + z6)(z3z4 − z1z2)
)

Ψ
654321

= (A + z2 − z3)(A + z2 − z4)(A + z3 − z4)(A + z5 − z6)(2A + z1 − z6)(2A + z1 − z5)

Ψ
1 2 3 4 5 6

= (A + z1 − z2)(A + z3 − z4)(A + z4 − z5)(A + z3 − z5)(2A + z1 − z6)(2A + z2 − z6)

Ψ
654321

= (A + z2 − z3)(A + z4 − z5)(2A + z1 − z6)
(
5A3 + 3A2(z1 + z2 + z3 − z4 − z5 − z6) +

+A(2z1(z2 + z3 − z6) + z2z3 + z4z5 − (z2 + z3)z6 + (z4 + z5)(2z6 − z1 − z2 − z3))

+(z1 + z6)(z2z3 − z4z5) + (z2 + z3)(z4z5 − z1z6) + (z4 + z5)(z1z6 − z2z3)
)

and in particular the degrees 1, 4, 4, 4, 10 respectively, upon taking zi = 0 and A = 1.

3.3. Razumov–Stroganov point and ASM. At q = e2iπ/3, Ψ becomes the ground state eigenvector
of the integrable transfer matrix with periodic boundary conditions and inhomogeneities w1, . . ., wN , or
equivalently of the scattering matrices Ti = Ri−1(wi−1/wi) · · ·R1(w1/wi)SRN−1(wN−1/wi) · · ·Ri(wi+1/wi).
Consider now the particular case w1 = · · · = wN = 1, when Ψ is the Perron–Frobenius eigenvector of the
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Hamiltonian H = e1 + · · ·+ eN where eN = S−1e1S. Note that the periodic boundary conditions mean that
H is cyclic-invariant: SH = HS. Normalizing Ψ so that its smallest entry Ψπ0

is 1, we have the following

Theorem. [4] The sum of entries
∑

π Ψπ is equal to the number of Alternating Sign Matrices, A(n).

The result of [4] is actually much more general, as the sum
∑

π Ψπ was evaluated in the presence of
all the spectral parameters wi, and identified with proper normalization to the so-called Izergin–Korepin
determinant [20, 21], also equal to a particular Schur function [22]. Still unproven, however, is the

Conjecture. [1] The largest entry of Ψ, with arches connecting consecutive points, is A(n − 1).

For instance, plugging wi = 1 and q = e2iπ/3 into the above example, we get for N = 6, Ψ = (1, 2, 1, 1, 2)
and

∑
π Ψπ = 7 = A(3), the total number of 3 × 3 ASMs.

4. Br case

We now develop the Br case, which allows us to recover and interpret geometrically the results of [16].
We concentrate on the even case r = 2n. We parametrize as usual the roots αi = zi−zi+1 for i = 1, 2, . . . , r−1
and αr = zr.

We consider matrices that square to zero in the fundamental representation of dimension N = 2r + 1: a
possible choice is to select upper triangular matrices satisfying MT J + JM = 0, J antidiagonal matrix with
1’s on the second diagonal. It turns out that the orbital varieties are indexed by the same link patterns as
before, of size r; and that the Weyl group representation is actually a representation of the same quotient, the
Temperley–Lieb algebra TLr(β), the additional reflection sr being represented by a multiple of the identity.

4.1. B-type qKZ equation. According to the dicusssion above, the B qKZ system reads:

Ri(wi+1/wi)Ψ = τiΨ, i = 1, 2, ..., r − 1(4.1)

w−mr

r

q−1wr − q

q−1 − qwr
Ψ = τrΨ(4.2)

where τr stands for the inversion of the last spectral parameter, namely τrΨ(w1, ...wr−1, wr) = Ψ(w1, ..., wr−1, 1/wr)
and mr is the degree of Ψ in wr .

Finally, these equations are to be supplemented by the affinization relation. The latter is expressed by
considering the reflection with respect to the extra root z1. One finds that

(4.3) (q3w1)
−m1

q−2 − q2w1

qw1 − q−1
Ψ(w1, w2, ..., wr) = Ψ

( 1

q6w1
, w2, ..., wr

)

where m1 is the degree of Ψ in z1.
Introducing the boundary operators K1 and Kr so that Eqs. (4.2–4.3) reduce to K1Ψ = K2Ψ = Ψ, as

well as the usual Ri = τiRi(wi+1/wi), the generators of the weight lattice (as abelian subgroup of Ŵ ) are:
(i) Ti = RiRi+1 · · ·Rr−1KrRr−1 · · · R1K1R1 · · ·Ri−1 that implements wi → q6wi and (ii) one additional
generator implementing wi → q3wi simultaneously for all i. The latter is a combination of R and K matrices
as well as an additional operator implementing the reflection wi ↔ q−3/wr+1−i for all i.

The minimal polynomial solution to the system (4.1–4.3) has degree m1 = mr = r − 1 = 2n− 1 in each
spectral parameter and total degree n(3n − 1). As before it has a simple factorized base entry

(4.4) Ψπ0
= C

∏

1≤i<j≤n

(qwi − q−1wj)(q
−2 − q2wiwj)

∏

n+1≤i<j≤2n

(qwi − q−1wj)(qwiwj − q−1)

where C = 2n
∏r

i=1(qwi − q−1) is a common (symmetric) factor to all entries of Ψ. All other entries may be
obtained from this one in a triangular manner.

Example: For B4, there are 2 link patterns as for the case A3. The minimal degree polynomial solution
of the level one B4 qKZ equation reads:

Ψ
1 2 3 4

= C(qw1 − q−1w2)(q
−2 − q2w1w2)(qw3 − q−1w4)(qw3w4 − q−1)

Ψ
1 2 3 4

= C(qw2 − q−1w3)(q
−1w1 − qw1w2w3 − q−5w4 − qw2

1w4 + (q−1 − q)w1(w2 + w3)w4

+q−1w2w3w4 + q5w2
1w2w3w4 + q−1w1w

2
4 − qw1w2w3w

2
4)
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As before, we get the corresponding multidegrees upon taking the rational limit, with the result:

Ψ
1 2 3 4

= C′(A + z1 − z2)(2A + z1 + z2)(A + z3 − z4)(A + z3 + z4)

Ψ
1 2 3 4

= C′(A + z2 − z3)
(
5A3 + 3A2(2z1 + z2 + z3) + A(2z2

1 + 3z1(z2 + z3) + z2z3 − z2
4)

+(z2 + z3)(z
2
1 − z2

4)
)

with C′ = 4(A + z1)(A + z2)(A + z3)(A + z4); hence the degrees 4 × 2, 4 × 5 for A = 1 and zi = 0.

4.2. RS point, VSASM and CSTCPP. As explained in Sect. 2, the case q = e2iπ/3 is special in
that the problem admits a transfer matrix, and its solution Ψ in the homogeneous limit where all wi = 1 is
the groundstate of a Hamiltonian

(4.5) HB = e1 + e2 + ... + eN−1

which is the open boundary version of the Ar Hamiltonian H .
As shown in [17], at the RS point q = e2iπ/3, and in the homogeneous limit where wi = 1 for all i, and

in which Ψ is normalized so that its smallest entry is Ψπ0
= 1, we have the following

Theorem. [16] The sum of entries
∑

π Ψπ is equal to the number of Vertically Symmetric Alternating
Sign Matrices (VSASM), AV (2n + 1).

This was actually proved in the same spirit as for the Ar case, by identifying the sum of compo-
nents including all spectral parameters wi as yet another determinant, which takes the form of a particular
symplectic Schur function. A similar result holds for the case of odd r = 2n − 1, namely once properly
normalized, the sum of entries

∑
π Ψπ is equal to an integer we call AV (2n) by analogy. It turns out

that AV (2n) = N8(2n) is the number of Cyclically Symmetric Transpose Complement Plane Partitions
(CSTCPP) in an hexagon of size 2n × 2n × 2n [24]. The numbers AV (i) both have determinant formulae,

namely AV (2n) = det
(

i+j
2i−j

)
0≤i,j≤n−1

, and AV (2n + 1) = det
(
i+j+1
2i−j

)
0≤i,j≤n−1

.

As in the A case, we have the

Conjecture. [1] The largest entry of Ψ, with arches connecting consecutive points, is AV (r).

Example: for r = 2n = 4, taking wi → 1 and q = e2iπ/3 in the above expressions, we get the components
Ψ = (1, 2), which sum to 3 = AV (5), the number of 5×5 VSASMs, and the maximal entry of Ψ is 2 = N8(4).

5. Cr case

The simple roots of Cr are αi = zi − zi+1, i = 1, 2, . . . , r − 1 and αr = 2zr. We concentrate on the
odd case r = 2n + 1, and consider the fundamental representation of dimension N = 2r. One choice is to
select upper triangular matrices satisfying MT J + JM = 0, J antidiagonal matrix with 1’s (resp. −1’s) in
the upper (resp. lower) triangle.

5.1. Orbital varieties and C-type Temperley–Lieb algebra. There are
(

r
b r+1

2
c

)
orbital varieties,

which are now indexed by open link patterns, that is configurations of r points on a line connected in the
upper-half plane either in pairs via (closed) arches or to infinity via half-lines (open arches).

The representation of the Weyl group on these open link patterns takes the form of a modified Temperley–
Lieb algebra. We describe now its q-deformed version, CTL(β) (see also [23] for other variants of Temperley–
Lieb algebra). The generators e1, e2, . . . , er−1 obey the standard TL(β) relations (3.1) and the additional
“boundary” generator er satisfies: e2

r = βer, er−1erer−1 = 2er−1.
These generators act on open link patterns as follows. Open link patterns are represented with their

open arches connected to a vertical line on the right. The ei, i = 1, 2, ..., r − 1 act as usual, and er like the
left half of an e, connecting the point 2n+1 to the vertical line (first line of Fig. 3). The rule is that any loop
may be erased and replaced by a factor β. Moreover, whenever a connection between points on the vertical
line (consecutive open arches) is created, they may also be erased and replaced by a factor β (resp. 2) if
this is created by the action of some e2i−1 (resp. e2i). As r is odd, the loop created by e2

r yields a weight β,
while that created by er−1erer−1 yields a weight 2, hence the result 2en−1 (second line of Fig. 3).
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β

i+1i

=

=

β

2 
x

i odd

i even

β

2n+1

=

= 2 

Figure 3. The rule for erasing arches at infinity when acting with ei: they are replaced
by a factor 2 (resp. β) according to whether the index i is even (resp. odd). We have also
represented the case i = 2n + 1 (first line), and the resulting boundary relations e2

r = βer

and er−1erer−1 = 2er−1 (second line).

We shall also need an additional operator e′1 satisfying the relations: (e′1)
2 = βe′1 and e1e

′
1 = e′1e1 =

e′1e2e
′
1 − e′1 = e2e

′
1e2 − e2 = 0. It is defined as e′1 = se1s, where s is the involution acting on link patterns

as follows: (i) sπ = π if the arch connected to point 1 is open, and (ii) sπ = −π + π′ otherwise, where π′ is
the link pattern in which the closed arch connected to 1 is cut into two open arches.

5.2. C-type qKZ equation. To each simple root we attach respectively the standard trigonometric
R-matrices Ri(wi+1/wi), i = 1, 2, . . . , r − 1 of Eq. (3.2), and the boundary R-matrix Rr(1/w2

r) ≡ Rαr
, with

the same expression.
The level one C qKZ equation consists of the following system

Ri(wi+1/wi)Ψ = τiΨ(5.1)

w−mr

r Rr(1/w2
r)Ψ = τrΨ(5.2)

where as usual τi acts by interchanging the spectral parameters wi and wi+1, i = 1, 2, ..., r − 1 and τr acts
on Ψ by letting wr → 1/wr, and mr is the degree of Ψ in wr .

These are finally supplemented by the affinization relation, obtained by considering an extra root, say
α′

1 = −z1 − z2, and the associated boundary operator R′
1(q

6w1w2):

(5.3) R′
1(q

6w1w2)Ψ = τ ′
1Ψ

where τ ′
1 interchanges w2 and 1/(q6w1), and R′

1 is of the form of Eq. (3.2) with e′1 in place of ei. Using
R′

1(w) = sR1(w)s, the relation can also be recast into

(5.4) (q3z1)
−m1sΨ(w1, . . . , wr) = Ψ

( 1

q6w1
, w2, . . . , wr)

The generators of the weight lattice (as abelian subgroup of Ŵ ) are very similar to the generators (i)
of the case Br: the only change concerns the boundary operators K1 and Kr now implementing Eqs. (5.2)
and (5.4).

The polynomial solution Ψ to the level one Cr qKZ system has degree m1 = mr = 2n in each variable,
total degree n(2n + 1) and base entry

(5.5) Ψπ0
=

∏

1≤i<j≤2n+1

(qzi − q−1zj)

and all the other entries of Ψ may be obtained in a triangular way from this one.
Example: for r = 3, we have the following minimal polynomial solution to the level one C3 qKZ system:

Ψ
1 2 3

= (qw1 − q−1w2)(qw1 − q−1w3)(qw2 − q−1w3)

Ψ
1 2 3

= (qw1 − q−1w2)(q
2w1w2 − q−2)(q−1 − qw2

3)

Ψ
1 2 3

= (q3w2
1 − q−3)(qw2 − q−1w3)(qw2w3 − q−1)
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which, upon taking the rational limit yields the multidegrees:

Ψ
1 2 3

= (A + z1 − z2)(A + z1 − z3)(A + z2 − z3)

Ψ
1 2 3

= (A + z1 − z2)(2A + z1 + z2)(A + 2z3)

Ψ
1 2 3

= (3A + 2z1)(A + z2 − z3)(A + z2 + z3)

and the degrees Ψ = (1, 2, 3) for A = 1 and zi = 0.

5.3. RS point and CSSCPP. At the point q = e2iπ/3, Ψ may be viewed as the ground state eigen-
vector of a transfer matrix, corresponding in the homogeneous limit to the Hamiltonian

(5.6) HC =
e1 + e′1

2
+

r−1∑

i=2

ei + er

Normalizing Ψ so that its smallest entry Ψπ0
= 1, we have been able to compute the sum of entries to

be A(n)A(n + 1). In the case of even r = 2n, the above may be repeated almost identically: in the presence
of spectral parameters, the even case may be recovered from the odd one by taking w2n+1 → −q−1, and
dividing out the result by

∏
1≤i≤2n(1 + q3wi). Indeed, this specialization leaves us with only non-vanishing

components whith an open arch at the rightmost point, in bijection with open link patterns with that point
erased, hence the projection onto the case of size one less. This leads us to the

Conjecture.

(5.7)
∑

π

Ψπ = A(br/2c)A(dr/2e)

Note that the sum in the even case, A(n)2, also counts the Cyclically Symmetric Self-Complementary
Plane Partitions (CSSCPP) in an hexagon of size 2n × 2n × 2n [24]. Also note the determinant formulae

A(n)2 = det
((

i+j
2i−j−1

)
+

(
i+j+1
2i−j

))
0≤i,j≤n−1

and A(n)A(n + 1) = det
((

i+j+1
2i−j

)
+

(
i+j+2
2i−j

))
0≤i,j≤n−1

.

Furthermore, consider the left eigenvector v of HC with the same eigenvalue (r for r odd, r + 1/2 for r
even). Normalize v so that its entries are coprime positive integers. We have found empirically the following

Conjecture.

(5.8)
∑

π

vπΨπ = A(r) .

Finally, we formulate the

Conjecture. The largest entry of Ψ for Cr is the sum of entries for Cr−1.

Example: at r = 5, Ψ = (1, 2, 3, 3, 0, 1, 4, 0, 0, 0), v = (48, 36, 28, 34, 24, 23, 25, 18, 17, 14),
∑

π Ψπ = 14 =
2 × 7 = A(2)A(3),

∑
π vπΨπ = 429 = A(5), and the maximal entry of Ψ is 4 = A(2)2.

6. Dr case

The simple roots of Dr are αi = zi − zi+1 for i = 1, 2, . . . , n− 1 and αr = zr−1 + zr. We concentrate on
the odd case r = 2n + 1, and consider again the fundamental representation of dimension N = 2r. Just like
in the Br case, one choice is to select upper triangular matrices satisfying MT J + JM = 0, J antidiagonal
matrix with 1’s on the second diagonal.

6.1. Orbital varieties and D-type Temperley–Lieb algebra. Just as in the case C, there are(
r

b r+1

2
c

)
orbital varieties, indexed by open link patterns.

We now deal with D-type Temperley–Lieb algebras, denoted DTL(β), with generators ei, i = 1, 2, ..., r−1
obeying the TL(β) relations (3.1) and an extra generator e′r−1, satisfying the relations:

(6.1) (e′r−1)
2 = βer−1, er−1e

′
r−1 = e′r−1er−1 = er−2e

′
r−1er−2 − er−2 = e′r−1er−2e

′
r−1 − e′r−1 = 0

These operators act on open link patterns as follows. The ei, i = 1, 2, . . . , r − 1 act in the usual way,
by creating a little arch between points i and i + 1 and by gluing the two former points. To describe the
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1 2 543

6 7 8 9 10

Figure 4. The ten open link patterns for D5. In the second line, we have transformed
the open link patterns by connecting the two rightmost open arches into a (dashed) arch.
The involution s simply switches the color of the rightmost arch (if it is closed) in this
representation, namley exchanges 1 ↔ 2, 3 ↔ 6, 4 ↔ 8, 5 ↔ 9, and leaves 7 and 10
invariant (as their rightmost arch is open).

action of e′r−1, let us first connect the open arches of the open link patterns by pairs of consecutive open
arches from the left to the right, and represent the newly formed arches in a different color (dashed lines,
cf Fig. 4 for the D5 example). We then define an involution s on open link patterns that simply switches
the color (solid ↔ dashed) of the rightmost arch if it is closed, and leaves it invariant if it is open. Then
e′r−1 = ser−1s.

Finally, we introduce an extra boundary operator e0, which is the right half of an e (like a reflected er

of Cr), with its open end connected to the vertical line, and acts as such, with the same rules as for Cr, but
upon reflection of indices i ↔ r − i. It satisfies the relations: e2

0 = βe0 and e1e0e1 = 2e1.

6.2. D-type qKZ equation. We associate to the roots the R-matrices Ri(wi+1/wi) of Eq. (3.2), and
Rr(1/(wrwr−1)) defined by the same equation in which ei is replaced with e′r−1, so that Rr(w) = sRr−1(w)s.

The level one D qKZ equation consists of the following system

Ri(wi+1/wi)Ψ = τiΨ, i = 1, 2, ..., r − 1

Rr(1/(wrwr−1))Ψ = τ ′
r−1Ψ

where as usual τi acts by interchanging the spectral parameters wi and wi+1, i = 1, 2, ..., r − 1 and τ ′
r acts

on Ψ by interchanging wr−1 and 1/wr. Upon using the above relation e′r−1 = ser−1s, the latter equation
may be equivalently replaced by

(6.2) z−mr

r sΨ(z1, . . . , zr) = Ψ
(
z1, . . . , zr−1,

1

zr

)

These are finally supplemented by the affinization relation, obtained by considering the extra root
α0 = −2z1, and the associated boundary operator R0(q

6w2
1) involving the extra operator e0:

(6.3) w−m1

1 R0(q
6w2

1)Ψ = τ0Ψ

where τ0f(w1) = f(1/(q6w1)) and m1 the degree of Ψ in w1.

The construction of the abelian subgroup of Ŵ is similar to the cases B and C, and is skipped for the
sake of brevity.

The minimal degree polynomial solution to the level one Dr qKZ system has total degree r(r− 1)/2 and
partial degree m1 = mr = r − 1 in all variables. Its base entry, corresponding to the open link pattern π0

with only open arches reads

(6.4) Ψπ0
=

∏

1≤i<j≤2n+1

(qzi − q−1zj)

and all the other entries of Ψ may be obtained in a triangular way from this one.
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Example: for r = 3, we have the following minimal polynomial solution to the level one D3 qKZ system:

Ψ
1 2 3

= (qw1 − q−1w2)(qw1 − q−1w3)(qw2 − q−1w3)

Ψ
1 2 3

= (qw1 − q−1w2)(qw1w3 − q−1)(qw2w3 − q−1)

Ψ
1 2 3

= (q−2 − q2w2
1)(qw2 − q−1w3)(qw2w3 − q−1)

which, upon taking the rational limit gives the multidegrees:

Ψ
1 2 3

= (A + z1 − z2)(A + z1 − z3)(A + z2 − z3)

Ψ
1 2 3

= (A + z1 − z2)(A + z1 + z3)(A + z2 + z3)

Ψ
1 2 3

= 2(A + z1)(A + z2 − z3)(A + z2 + z3)

and the degrees Ψ = (1, 1, 2) for A = 1 and zi = 0.

6.3. RS point and HTASM. At the point q = e2iπ/3, Ψ may be viewed as the Perron–Frobenius
eigenvector of a transfer matrix, corresponding in the homogeneous limit to the Hamiltonian

(6.5) HD = e0 +

r−2∑

i=1

ei +
er−1 + e′r−1

2

Note that upon the reflection ei → er−i, this Hamiltonian is mapped onto HC : we are dealing with the same
algebra, but in different representations.

Going to the RS point q = e2iπ/3 and taking the homogeneous limit wi = 1 for all i, and normalizing Ψ
so that its smallest entry is Ψπ0

= 1, we have found the

Conjecture. The sum of entries
∑

π Ψπ is the number of Half-Turn Symmetric Alternating Sign
Matrices of size r, AHT (r).

This conjecture also works in the even case r = 2n, which may be obtained from the odd one by taking
z1 = −q−2, shifting all remaining spectral parameters wi → wi−1, i = 2, 3, ..., 2n + 1, and dividing out

by
∏

1≤i≤2n(1 + zi). Note the formulae AHT (2n) = det
((

i+j
2i−j

)
+

(
i+j+1
2i−j

))
0≤i,j≤n−1

and AHT (2n + 1) =

det
((

i+j+1
2i−j

)
+

(
i+j+2
2i−j+1

))
0≤i,j≤n−1

.

Introduce as before the left Perron–Frobenius eigenvector v of HD with coprime positive integer entries.

Conjecture.

(6.6)
∑

π

vπΨπ = A(r) .

Finally, we also find the

Conjecture. The largest entry of Ψ for Dr is the sum of entries for Cr−1.

Example: at r = 5, Ψ = (1, 1, 3, 4, 2, 3, 1, 4, 2, 4), v = (10, 10, 17, 14, 18, 17, 23, 14, 18, 25),
∑

π Ψπ = 25 =
AHT (5),

∑
π vπΨπ = 429 = A(5), and the maximal entry of Ψ is 4 = A(2)2, the sum of the components of

the C4 solution.
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