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Abstract.

A zigzag or ribbon is a connected skew diagram that contains no 2 × 2 boxes. Given a composition

β = (β1, . . . βk), we let Zβ denote the skew Schur function corresponding to the zigzag shape whose row
lengths are β1, . . . βk reading from top to bottom. For each n, the set {Zλ}λ`n is a basis for Λn, the space of
homogeneous symmetric functions of degree n. In this paper, we investigate some characteristics of the dual
basis of {Zλ}λ`n relative to the Hall inner product which we denote by {DZλ}λ`n. We give a combinatorial
interpretation for the coefficients in the expansion of DZλ in terms of the monomial symmetric functions
{mµ}µ`n as a certain signed sum of paths in the partition lattice under refinement. We shall show that
in many cases, we can give an explicit formulas for the coefficients aµ,λ = DZλ |mµ . In addition, we give
explicit formulas for the coefficients that arise in the expansion of DZλ in terms of Schur functions for
several special cases. As an application, we obtain combinatorial interpretations for the coefficients in the
expansion of Schur functions and general ribbon Schur functions in terms of ribbon Schur functions indexed
by partitions.

Résumé. Un zigzag ou un ruban est un diagramme connexe oblique qui ne contient aucune boıite 2 × 2.
Soit une composition β = (β1, . . . βk), notons Zβ la fonction oblique de Schur correspondant la forme de
zigzag dont les longueurs des lignes sont β1, . . . βk lu de haut en bas. Pour chaque n, l’ensemble {Zλ}λ`n

est une base Λn, de l’éspace des fonctions symétriques homogène de degré n. Dans cet article, nous étudions
certaines caractéristiques de la base duale de {Zλ}λ`n relativement au produit intérieur de Hall que nous
dénotons par {DZλ}λ`n. Nous donnons une interprétation combinatoire des coefficients dans l’expansion
de DZλ en termes des fonctions symétriques monômiales {mµ}µ`n comme une somme signée de chemin
dans le treillis des partages (l’ordre est le raffinement). Nous montrerons que, dans beaucoup de cas, nous
pouvons donner des formules explicites pour les coefficients aµ,λ = DZλ |mµ . De plus, nous donnons dans
plusieurs cas des formules explicites pour les coefficients dans l’expansion de DZλ en termes de fonctions
de Schur. Comme application, nous obtenons des interprétations combinatoires pour les coefficients dans
l’expansion des fonctions de Schur et des fonctions Schur de ruban en termes de fonctions de Schur ruban
indexées par les partages.

1. Introduction

Zigzag (or ribbon) Schur functions are the skew Schur functions with a ribbon shape and indexed by
compositions. A composition β = (β1, . . . , βk) of n, denoted β |= n, is a sequence of positive integers such
that β1 + β2 + . . . + βk = n. We define a zigzag shape to be a connected skew shape that contains no 2 x 2
array of boxes. Given a composition β = (β1, . . . βk), we let Zβ denote the skew Schur function corresponding
to the zigzag shape whose row lengths are β1, . . . βk reading from top to bottom. For example Figure 1 shows
the zigzag shape corresponding to the composition (2, 3, 1, 4). As pointed out in [2], zigzag Schur functions
arise in many contexts. For example, the scalar product of any two zigzags gives the number of permutations
σ such that σ and σ−1 have the associated pair of descent sets [9]. Zigzags can also be used to compute
the number of permutations with a given descent set and cycle structure [5]. MacMahon [8] showed their
coefficients in terms of the monomial symmetric functions count descents in permutations with repeated
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Figure 1. The ribbon shape corresponding to the composition (2, 3, 1, 4), so that
s(7,4,4,2)/(3,3,1) = Z(2,3,1,4).

elements. They also show up as sln-characters of the irreducible components of the Yangian representation

in level 1 modules of ŝln[6].
The zigzag Schur functions corresponding to partitions of n form a basis of Λn, the space of homogeneous

symmetric functions of degree n, and therefore they have a dual basis relative to the Hall inner product which
we denote by {DZλ}λ`n. We shall call DZλ the dual zigzag symmetric function corresponding to λ. The
basis {DZλ}λ`n has not been extensively studied. Let {mλ}λ`n denote the set of monomial symmetric
functions, {hλ}λ`n denote the set of homogeneous symmetric functions, and {sλ}λ`n denote the set of Schur
functions. The main result of this paper is to give a combinatorial interpretation to coefficients that arise in
the expansion of DZλ in terms of the monomial symmetric functions. That is, we shall give a combinatorial
interpretation to aµ,λ where

(1.1) DZλ =
∑

µ

aµ,λmµ.

Our main result will show that aµ,λ is a signed sum over the weights of certain paths in the lattice of
partitions under refinement. In general such a signed sum is complicated, but we will show that in many
special cases, we can explicitly evaluate this sum. For example, we will show that aµ,(n) = 1 for all µ so that

DZ(n) =
∑

µ

mµ = s(n)

where s(n) is the Schur function associated to the partition with only one part.
Once we have found our combinatorial interpretation for aµ,λ, we can obtain combinatorial interpreta-

tions for the expansion of DZλ in terms of any other basis by using the combinatorial interpretations of
the transition matrices between bases of symmetric functions found in [1]. In particular, we shall use this
method to find explicit values for bµ,λ where

(1.2) DZλ =
∑

µ

bµ,λsµ

for certain special cases.
We now give brief explanations of the concepts to state our main result. There is a natural correspondence

between a composition β of n and subsets of [n− 1]. That is, given a composition β = (β1, . . . , βk) of n, we
define a subset of [n − 1] by

(1.3) Set(β) = {β1, β1 + β2, β1 + β2 + β3, . . . , β1 + β2 + . . . + βk−1}.
We also let λ(β) denote the partition that arises from β by arranging its parts in decreasing order and `(β)
denote the number of parts of β. For example, if β = (2, 3, 1, 2), then Set(β) = {2, 5, 6} and λ(β) = (3, 2, 2, 1).
Given a subset S = {a1 < a2 < · · · < ar} ⊆ [n − 1], we define a composition of n by

(1.4) βn(S) = (a1, a2 − a1, . . . , ar − ar−1, n − ar).

For example, if S = {2, 4, 8}, then β10(S) = (2, 2, 4, 2). We also define shapen(S) = λ(βn(S)). Given two
compositions β and γ, we say that β is a refinement of γ, denoted β ≤r γ, if by adding together adjacent
components of β, we can obtain γ. For two partitions µ and λ with µ ≤r λ, we define Path(µ, λ) to be the
set of all P = (µ0, µ1, . . . , µk), such that µ = µ0 <r µ1 <r . . . <r µk = λ. If P = (µ0, µ1, . . . , µk) is such a
path, we let `(P ) = k denote the length of P . Finally, µ and λ are partitions of n, then we define

[µ → λ] = |{S ⊆ Set(µ) : shapen(S) = λ}|
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For example, if µ = (2, 2, 2, 1) and λ = (4, 2, 1), then [µ → λ] = 2, since Set(µ) = {2, 4, 6} and λ(β7({2, 6})) =
λ(β7({4, 6})) = (4, 2, 1).

This given, our main result is to give a combinatorial interpretation of for the coefficients aµ,λ that arise
in (1.1).

Theorem 1.1. If λ and µ are partitions of n, then

aµ,λ = (−1)l(µ)−l(λ)
∑

P∈Path(µ,λ)

[P ](−1)l(P )

where P = (µ0, µ1, . . . , µk), µ = µ0 <r µ1 <r . . . <r µk = λ and [P ] = [µ0 → µ1][µ1 → µ2] . . . [µk−1 → µk].

As one application of our main result, we can give a combinatorial interpretation of the expansion of Zα

in terms of Zλ’s, where α is a composition of n, and λ is a partition of n. It is known, see [4], that

Zα =
∑

T⊆Set(α)

(−1)|Set(α)−T |hλ(β(T )).

Thus if Zα =
∑

µ`n fµ,αZµ, then

(1.5) fµ,α = 〈Zα, DZµ〉 =
∑

T⊆Set(α)

(−1)|Set(α)−T |aλ(β(T )),µ.

In principle, (1.5) gives rise to a combinatorial algorithm to compute the coefficients fµ,α. However, such an
algorithm is not necessarily the most efficient way to compute these coefficients.

The outline of this paper is as follows. In Section 2, we shall review the necessary background for
symmetric functions and the combinatorial interpretation of the entries of the transition matrices between
various bases of symmetric functions that we shall need. In particular, we shall use the Jacobi-Trudi identity
to give a combinatorial interpretation of the coefficients Zλ |hµ

. In Section 3, we outline the proof of our
main theorem and give some examples of the computations involved in computing the coefficients aµ,λ. In
Section 4, we give closed forms for several of the coefficients, independent of the size of the composition. In
Section 5, we give the expansion of several dual zigzags in terms of Schur functions which are independent
of the size of the partition. In Section 6, we give a brief explanation of two applications of our main result.

2. Background Information

We say that λ = (λ1 ≥ · · · ≥ λk) is a partition of n, written λ ` n if λ1 + . . . + λk = n = |λ|. We
`(λ) denote the number of parts of λ. We let Fλ denote the Ferrers diagram of λ. If µ = (µ1, . . . , µm) is a
partition where m ≤ k and λi ≥ µi for all i ≤ m, we let Fλ/µ denote the skew shape that results by removing
the cells of Fµ from Fλ.

Figure 2. The skew Ferrers diagram of (3, 3, 2, 1)/(2, 1).

A column-strict tableau T of shape λ is any filling of Fλ with natural numbers such that entries in each
row are weakly increasing from left to right, and entries in each column are strictly increasing from bottom
to top. We define the content of T to be c(T ) = (α1, α2, . . . , ) where αi is the number of times that i occurs
in T . If λ is a partition denoted by λ = (λ1, . . . , λl) = (1m1 , 2m2 , . . . , nmn), where mi is the number of parts
of λ equal to i, then we define zλ = 1m12m2 · · ·nmnm1!m2! . . . mn!.

There are six standard bases of the space of homogeneous symmetric functions of degree n, Λn(x),
which are generally notated as: {mλ}λ`n (the monomial symmetric functions), {hλ}λ`n (the complete
homogeneous symmetric function), {eλ}λ`n (the elementary symmetric functions), {pλ}λan (the power sum
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Figure 3. A column strict tableau of shape (3, 2, 2, 1) and content (2, 2, 1, 2, 1).

symmetric functions), {fλ}λ`n (the forgotten symmetric functions) and {sλ}λ`n (the Schur functions), where
λ is a partition of n.

The Hall inner product is a standard scalar product on the space of homogeneous symmetric functions
Λn(x), which is defined by:

〈mλ, hµ〉 = δλ,µ

where

δλ,µ =

{

1 if λ = µ,
0 otherwise.

Under this scalar product, {sλ}λ`n and {pλ/
√

zλ}λ`n are known to be self-dual, and {eλ}λ`n and {fλ}λ`n

are dual [1].
When given two bases of Λn(x), {aλ}λ`n and {bλ}λ`n, we first fix some ordering of the partitions of n,

e.g. the lexicographic order, and then we may think of the bases as row vectors, 〈aλ〉λ`n and 〈bλ〉λ`n. We
can define the transition matrix M(a, b) that transforms the basis 〈aλ〉λ`n into the basis 〈bλ〉λ`n by

〈bλ〉λ`n = 〈aλ〉λ`nM(a, b).

The (λ, µ) entry of M(a, b) is given by the equation

bλ =
∑

µ`n

aµM(a, b)µ,λ.

The main goal of this paper is to find a combinatorial interpretation of the entries of M(m, DZ). That
is, we want find a combinatorial interpretation for the aµ,λ where

DZλ =
∑

µ

aµ,λmµ.

In addition, we shall also be interested in finding a combinatorial interpretation for the entries of M(s, DZ).
That is, we want to find a combinatorial interpretation for bµ,λ where

DZλ =
∑

µ

bµ,λsµ.
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We now give examples of the expansion of {DZλ}λ`n when n = 6. We first give the expansion of DZλ in
terms of the monomial symmetric functions, when λ ` 6.

DZ(6) = m6 + m5,1 + m4,2 + m4,1,1 + m3,3 + m3,2,1 + m3,1,1,1

+m2,2,2 + m2,2,1,1 + m2,1,1,1,1 + m1,1,1,1,1,1

DZ(5,1) = m5,1 + m4,1,1 + m3,2,1 + 2m3,1,1,1 + m2,2,1,1 + m2,1,1,1,1 − 2m1,1,1,1,1,1

DZ(4,2) = m4,2 + m4,1,1 + 2m2,2,2 + m2,2,1,1 + 2m2,1,1,1,1 + 7m1,1,1,1,1,1

DZ(4,1,1) = m4,1,1 + m3,1,1,1 + m2,2,1,1 + 3m2,1,1,1,1 + 8m1,1,1,1,1,1

DZ(3,3) = m3,3 + m3,2,1 + m3,1,1,1 + m2,2,1,1 + m2,1,1,1,1

DZ(3,2,1) = m3,2,1 + 2m3,1,1,1 + m2,2,1,1 + m2,1,1,1,1 − 3m1,1,1,1,1,1

DZ(3,1,1,1) = m3,1,1,1 + m2,1,1,1,1 + m1,1,1,1,1,1

DZ(2,2,2) = m2,2,2 + m2,2,1,1 + 2m2,1,1,1,1 + 5m1,1,1,1,1,1

DZ(2,2,1,1) = m2,2,1,1 + 3m2,1,1,1,1 + 9m1,1,1,1,1,1

DZ(2,1,1,1,1) = m2,1,1,1,1 + 5m1,1,1,1,1,1

DZ(1,1,1,1,1,1) = m1,1,1,1,1,1.

We note that we can get an indirect combinatorial interpretation of the coefficients bµ,γ by using the
combinatorial interpretation of the entries of the transition matrix M(s, m) given in [3]. That is,

M(s, m)λµ = K−1
µ,λ,

where ||K−1
µ,λ|| is the inverse Kostka matrix which will be described below. Thus

(2.1) DZλ =
∑

µ≤rλ

aµ,λ

∑

γ

sγK−1
µ,γ =

∑

γ

sγ

∑

µ≤rλ

aµ,λK−1
µ,γ .

Hence

(2.2) bµ,γ =
∑

µ≤rλ

aµ,λK−1
µ,γ .

The expansion of DZλ in terms of the Schur functions, when λ ` 6, is given below.

DZ(6) = s6 DZ(3,1,1,1) = s3,1,1,1 − s2,2,1,1

DZ(5,1) = s5,1 − s4,2 + s3,2,1 − s2,2,2 − s2,2,1,1 DZ(2,2,2) = s2,2,2

DZ(4,2) = s4,2 − s3,3 − s3,2,1 + 2s2,2,2 + s2,2,1,1 DZ(2,2,1,1) = s2,2,1,1

DZ(4,1,1) = s4,1,1 − s3,2,1 + s2,2,2 + s2,2,1,1 DZ(2,1,1,1,1) = s2,1,1,1,1

DZ(3,3) = s3,3 − s2,2,2 DZ(1,1,1,1,1,1) = s1,1,1,1,1,1

DZ(3,2,1) = s3,2,1 − 2s2,2,2 − s2,2,1,1.

Next we shall describe the combinatorial interpretation of the coefficients that arise in expanding a skew
Schur function in terms of the homogeneous symmetric functions. In particular, we will need to use the
expansion of skew-Schur functions in terms of hλ. To do so, we introduce rim hooks, special rim hooks
and special rim hook tabloids. More detail is given in [3] where they are used to give a combinatorial
interpretation of the inverse Kostka matrix.

For a partition λ, consider the Ferrers diagram Fλ. A rim hook of λ is a sequence of cells, h, along the
northeast boundary of Fλ such that any two consecutive cells in h share an edge and if we remove h from
Fλ, we are left with the Ferrers diagram of another partition. More generally, h is a rim hook of a skew
shape λ/µ if h is a rim hook of λ which does not intersect µ.

A rim hook tableau of shape λ/ν and type µ, T , is a sequence of partitions

T = (ν = λ(0) ⊂ λ(1) ⊂ · · ·λ(k) = λ),

such that for each 1 ≤ i ≤ k, λ(i)/λ(i−1) is a rim hook of λ(i) of size µi. We define the sign of a rim hook
hi = λ(i)/λ(i−1) to be

sgn(hi) = (−1)r(hi)−1,
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where r(hi) is the number of rows that hi occupies. The sign of a rim hook tableau T is

sgn(T ) = Πk
i=1sgn(hi).

Given two partitions λ(i−1) ⊂ λ(i), we say that λ(i)/λ(i−1) is a special rim hook if λ(i)/λ(i−1) is a rim
hook of λ(i) and λ(i)/λ(i−1) contains a cell from the first column of λ. A special rim hook tabloid (SRHT)
T of shape λ/µ is a sequence of partitions

T = (µ = λ(0) ⊂ λ(1) ⊂ · · ·λ(k) = λ),

such that for each 1 ≤ i ≤ k, λ(i)/λ(i−1) is a special rim hook of λ(i). We have a partition determined by
the integers |λ(i)/λ(i−1)| which is the type of the special rim hook tabloid T . Notice that we have used the
word tabloid instead of tableau in order to highlight there is no implicit order in the size of each successive
special rim hook, unlike rim hook tableau.

The sign of a special rim hook, hi = λ(i)/λ(i−1), and the sign of a special rim hook tabloid T , are defined
as we did for rim hooks and rim hook tableaux. We show an example of a special rim hook tabloid of type
(6, 5, 4, 2) and shape (5, 4, 4, 3, 1) in Fig 4. For |λ/ν| = |µ|, Eğecioğlu and Remmel [3] show that

Figure 4. A special rim hook tabloid of shape (5,4,4,3,1) and type (6,5,4,2).

sλ/ν =
∑

µ

K−1
µ,λ/νhµ(2.3)

where
K−1

µ,λ/ν =
∑

T is a SRHT of shape λ/ν and type µ

sgn(T ).

Hence we obtain a combinatorial description of

M(s, m)λ,µ = K−1
µ,λ.

Recall that we defined a composition β of n, denoted β |= n, as a list of positive integers (β1, β2, . . . , βk)
such that β1 + β2 + . . . + βk = n. We call βi a component of β, and we say that β has length l(β) = k
and size |β| = n. From this definition, we can see that β is a partition if each of its components are
weakly decreasing. For any composition β, we define the partition determined by β, λ(β), which we obtain
by reordering the components of β in weakly decreasing order, e.g. λ(2, 8, 9, 4) = (9, 8, 4, 2). Notice that
two compositions β, γ can determine the same partition, e.g. if β = (2, 8, 9, 4) and γ = (2, 9, 8, 4), then
λ(2, 8, 9, 4) = (9, 8, 4, 2) = λ(2, 9, 8, 4).

There is a natural correspondence between a composition β |= n and a subset Set(β) ⊆ [n − 1] =
{1, 2, . . . , n − 1} where

Set(β) = {β1, β1 + β2, β1 + β2 + β3, . . . , β1 + β2 + . . . + βk−1}.
We can also reverse this process so that for any subset S = {j1, j2, . . . , jk−1} ⊆ [n − 1], we can find the
composition βn(S) |= n where

βn(S) = (j1, j2 − j1, . . . , n − jk−1).

For example, the composition β = (2, 9, 8, 4) has Set(β) = {2, 11, 19} ⊆ [22]. We also define shapen(S) =
λ(βn(S)). For example if S = {2, 5, 6, 10} and n = 11, then β11(S) = (2, 3, 1, 4, 1), and shape11(S) =
(4, 3, 2, 1, 1).

Given two partitions λ and µ of n, we say that λ is a refinement of µ, written λ ≤r µ, if λ can be created
from µ by splitting some of the parts of µ into pieces. For example, (4, 2, 1, 1, 1, 1) ≤r (5, 3, 2) since we can
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split 5 into 4 + 1 and 3 into 1 + 1 + 1 to obtain λ. The cover relations in the lattice of partitions of n under
refinement arise by starting with a partition λ and combining two of the parts of λ to get µ. Similarly, given
two compositions β and γ, we say that β is a refinement of γ, denoted β ≤r γ, if by adding together adjacent
components of β, we can obtain γ. For example, 421131 ≤r 4314, meaning γ = 421131 is a refinement of
β = 4314. If we only add together a single pair of adjacent components of a partition β to get γ, then we
will say that γ covers β.

The refinement ordering restricted to the set of partitions forms a lattice which we call the lattice of
partitions under refinement, or more briefly, the refinement lattice. For two partitions µ and λ, with µ ≤r λ
we define Path(µ, λ) to be the set of all P = (µ0, µ1, . . . , µk), such that µ = µ0 <r µ1 <r . . . <r µk = λ. We
define the length of P , l(P ) = k.

Given two partitions of λ and µ of n such that µ ≤r λ, we define

[µ → λ] = |{S ⊆ Set(µ) : shapen(S) = λ}|.

As an example, let’s calculate [(2, 14) → (4, 2)]. Note that Set(2, 14) = {2, 3, 4, 5}. We want to find
|{S ⊆ {2, 3, 4, 5} : shape6(S) = (4, 2)|. The only two subsets of {2, 3, 4, 5} that have the appropriate shape
are {2} and {4}, so [(2, 14) → (4, 2)] = 2.

3. A sketch of the proof of Theorem 1.1

Before proceeding with the proof of Theorem 1.1, we shall demonstrate how it can be used to calculate
aµ,λ in the case where µ = (16) and λ = (3, 2, 1). Since our theorem says we sum over all paths in the
refinement lattice, we give the relevant portion of the refinement lattice in Fig. 5. First we give several

Figure 5. The refinement lattice from (1,1,1,1,1,1) to (3,2,1).

examples of how to calculate [α → β]. Recall that Set(λ) = {λ1, λ1 + λ2, . . . , λ1 + · · · + λk−1}. We first
calculate [(16) → (2, 14)], which is equal to |{S ⊂ Set(16) : shape6(S) = (2, 14)}|. Set(16) = {1, 2, 3, 4, 5},
and the subsets {2, 3, 4, 5}, {1, 3, 4, 5}, {1, 2, 4, 5}, {1, 2, 3, 5}, and {1, 2, 3, 4} all have shape equal to (2, 14).
Therefore [(16) → (2, 14)] = 5. Similarly [(16) → (3, 2, 1)] = 6 since {3, 4}, {3, 5}, {2, 5}, {2, 3}, {1, 3}, {1, 4}
are the only subsets T of Set(16) = {1, 2, 3, 4, 5} such that shape6(T ) = (3, 2, 1). Finally we calculate
[(2, 14) → (3, 13)]. In this case, Set(2, 14) = {2, 3, 4, 5} and the only subset T of Set(2, 14) such that
shape6(T ) = (3, 13) is {3, 4, 5}. Thus [(2, 14) → (3, 13)] = 1.

From these three examples we see that a considerable amount of work goes into calculating [α → β] for
every possibility in our refinement lattice. In Table 1, we give the values needed to calculate [α → β] for all
pairs in the refinement lattice from (16) to (3, 2, 1).

Once we have calculated those values, we can easily calculate the weights of each possible path in our
refinement lattice. These paths and weights are listed in Table 2. The length of the path will be used in our
calculation of aµ,λ.
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[16 → 2, 14] = 5 [2, 14 → 3, 13] = 1 [3, 13 → 3, 2, 1] = 2
[16 → 3, 13] = 4 [2, 14 → 22, 11] = 3 [22, 12 → 3, 2, 1] = 1
[16 → 22, 12] = 6 [2, 14 → 3, 2, 1] = 4
[16 → 3, 2, 1] = 6

Table 1. Values for [α → β] for pairs in the refinement lattice from (16) to (3, 2, 1).

Possible Paths Length of Path Weight of Path
[(16) → (3, 2, 1)] 1 6
[(16) → (3, 13)][(3, 13) → (3, 2, 1)] 2 8
[(16) → (22, 12)][(22, 12) → (3, 2, 1)] 2 6
[(16) → (2, 14)][(2, 14) → (3, 2, 1)] 2 20
[(16) → (2, 14)][(2, 14) → (3, 13)][(3, 13 → (3, 2, 1)] 3 10
[(16) → (2, 14)][(2, 14) → (22, 12)][(22, 12 → (3, 2, 1)] 3 15

Table 2. The weight of each possible path in the refinement lattice from (16) to (3, 2, 1).

Finally, we combine this information:

a(16),(3,2,1) = (−1)6−3
∑

P∈Path((16),(3,2,1))

−1l(P )[P ]

= −13(−11(6) + −12(8 + 6 + 20) + −13(10 + 15))

= −(−6 + 34 − 25)

= −3.

We should note that although this first example required many calculations, we have now done almost
all of the work for several other coefficients for n = 6 since our the set of paths that we considered also
arise in the computation of aα,β for other pairs of partitions. In addition, we will see later that the same
calculations allow us to evaluate an infinite number of coefficients aα,β where α and β are partitions of n > 6.

Outline of proof of Theorem 1.1:

We start by expanding the zigzag Schur functions in terms of the homogeneous symmetric functions
{hλ}λ`n derived from the Jacobi-Trudi by Egecioglu and Remmel [3],

sλ/µ = det(hλi−µj−i+j) =
∑

ν

K−1
ν,λ/µhµ

where h0 = 1 and hk = 0 if k < 0. Applying it specifically to zigzag Schur functions and using compositions
as subscripts, we can show that for any α |= n,

Zα = (−1)l(α)
∑

β≤rα

(−1)l(β)hλ(β).

Alternatively,

Zα = hλ(β(α)) +
∑

T⊂Set(α)

(−1)|Set(α)−T |hλ(β(α)).(3.1)

The result in 3.1 is well-known and can be proved by inclusion-exclusion [4]. Recall that [µ → λ] = |{S ⊆
Set(µ) : shapen(S) = λ}|. So

Zλ = hλ +
∑

λ≤rα

(−1)l(λ)−l(α)[λ → α]hα.

Since {Zλ}λ`n and {DZλ}λ`n are dual bases, it follows that
∑

γ

Zγ(x)DZγ(y) =
∑

γ

hγ(x)mγ(y)
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or, equivalently,
∑

γ

Zγ(x)DZγ(y)|hλ(x)mµ(y) = δλ,µ.

Given our expansion of Zλ(x) in terms of hλ(x)’s and the fact that 〈hλ(x), mµ(x)〉 = δλ,µ, we can then
show that

∑

γ

Zγ(x)DZγ(y)|hλ(x) =
∑

α≤rλ

(−1)l(α)−l(λ)[α → λ]mα(y)

and
∑

γ

Zγ(x)DZγ(y)|hλ(x)mµ(y) =
∑

µ≤rα≤rλ

(−1)l(α)−l(λ)[α → λ]aµ,α

=
∑

µ≤rα≤rλ

∑

P∈Path(µ,α)

[P ][α → λ]

=
∑

Q∈Paths(µ,λ)

sgn(Q)[Q]

Thus we need only show that
∑

Q∈Path(µ,λ) sgn(Q)[Q] = δλ,µ. This can be done by defining a weight

preserving involution on the set of paths in the lattice of partitions under refinement but we do not have the
space to give the argument in this paper.

4. Special Cases of the aµ,λ’s

We saw in our example calculating a(16),(3,2,1) how difficult and time-consuming it can be to find these
coefficients. However, in a number of special cases, we can actually compute a closed form for the sum
aµ,λ = (−1)l(µ)−l(λ)

∑

P∈Path(µ,λ)[P ](−1)l(P ). For example, if µ <r λ is a cover relation in the refinement

lattice, then there is only one path and the formula for the coefficient aµ,λ consists of a single term. In fact,
we can prove the following.

1. If λ and µ are a cover relation in the refinement lattice, then aµ,λ = [µ → λ].
2. Similarly, we can show that aµ,µ = 1 for all µ.
3. For any µ such that µ ` n, aµ,(n) = 1, so that we find DZ(n) =

∑

µ mµ = s(n).
We outline a proof of 3 by induction on the length of the refinement.

aµ,(n) = (−1)l(µ)−1
∑

P∈Path(µ,(n))

(−1)l(P )[P ]

= (−1)l(µ)−1
∑

µ<rα<r(n)

(−1)[µ → α]
∑

P∈Path(α,(n))

(−1)l(P )[P ]

+(−1)l(µ)−1(−1)[µ → (n)]

Our inductive assumption that aα,(n) = 1 gives that
∑

P∈Path(α,(n)) (−1)l(P )[P ] = (−1)l(α)−1. Thus Note

that

aµ,(n) = (−1)l(µ)−1(
∑

µ<rα<r(n)

(−1)[µ → α](−1)l(α)−1) + (−1)l(µ)−1(−1)[µ → (n)].

But if we think about the definition of [µ → α], now we are summing over all possibilities of ways to remove
at least one element from Set(µ) so

aµ,(n) = (−1)l(µ)−1
∑

∅(S⊆Set(µ)

(−1)|Set(µ)|−|S|

= (−1)l(µ)−1((
∑

∅⊆S⊆Set(µ)

(−1)|Set(µ)|−|S|) − (−1)|Set(µ)|)

But
∑

S⊆Set(µ)(−1)|S| = 0. So

aµ,(n) = (−1)l(µ)(0 − (−1)|Set(µ)|) = (−1)l(µ)((−1)|Set(µ)|+1)

But |Set(µ)| + 1 = l(µ), so aµ,(n) = 1.
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Other results can be found using careful examination of the lattice of refinement. The proofs of some
of the below items are very straightforward. For example, the proof of item 4 is plain because the relevant
portion of the refinement lattice contains only two shapes. Moreover, Set(1k) = {1, 2, . . . , k − 1} and when
we remove any element from Set(1k), one ends up with a set that has shape (2, 1k−2). Since there are k − 1
ways to remove one element from Set(1k), it follows that a(1k),(2,1k−2) = k − 1. The proofs of other items
are more involved.

Results with µ = (1k) and λ = (b, 1k−b) for b = 1, 2, . . . , 7:

4. a(1k),(2,1k−2) = k − 1
5. a(1k),(3,1k−3) = 1

6. a(1k),(4,1k−4) =

(

k − 1
2

)

− 2

7. a(1k),(5,1k−5) = − 1
2 (k − 1)(k − 4) + 3

8. a(1k),(6,1k−6) = 1
6 (k3 − 3k2 − 16k − 6)

9. a(1k),(7,1k−7) = − 1
3 (k)(k + 1)(k − 7) + 1

Here are some other results which are useful for the computation of the coefficients bµ,λ of (??):

10. a(1k),(32,1k−6) = 0
11. a(1k),(3,2,1k−5) = − 1

2k(k − 5)
12. a(2,1k−2),(4,1k−4) = k − 3
13. a(2,1k−2),(3,2,1k−5) = 1

Theorem 4.1. If d 6= 1,

a(2c,1b),(2c+d,1b−2d) =
b(b − 1) · · · (b − d + 2)

d!
(b − 2d + 1)

Note that if d = 1, the product on the right is not defined, so that Theorem 4.1 would not make sense.
However the case where d = 1 and c = 0 is a special case of one our previous formulas.

Finding the value of one coefficient also tells us the value of an infinite number of other coefficients. Let
µ = (µ1, . . . , µj). That is, define kµ to be the partition obtained when each part of µ is multiplied by k so
that kµ = (kµ1, . . . , kµj). Then we can prove the following result.

Theorem 4.2. For all k ∈ N,

aµ,λ = akµ,kλ.

In particular, if we apply Theorem 4.2 to Theorem 4.1, we obtain infinite number of cases where we have
explicit formulas for aµ,λ. The proof of Theorem 4.2 follows from an obvious bijection between paths in the
refinement lattice of (µ, λ) to paths in the refinement lattice of (kµ, kλ).

Here is another result of the same sort.

Theorem 4.3. Let µ = (µ1, . . . , µs) and λ = (λ1, . . . , λt). Then for any j such that 1 ≤ j < min(µs, λt),

aµ,λ = a(µ1,...,µs,j),(λ1,...,λt,j).

The proof of Theorem 4.3 follows from examining the compositions and noticing that we must always
have the last element of the composition in our subsets S in order for shapen(S) to match (λ1, . . . , λt, k).
This theorem works in ”both directions”, so to speak. Knowledge of the coefficients aµ,λ where µ ` n and
λ ` n both with smallest part larger than 1 allows us to compute values of aα,β for certain partitions α
and β of size larger than n. Conversely, knowledge of coefficients aµ,λ where µ and λ have identical unique
smallest part allows us to compute values of aα,β where α and β are partitions of size smaller than n by
removing that smallest part from both µ and λ.

Thus the combination of Theorem 4.2 and Theorem 4.3 enables us to calculate the value aα,β for infinitely
many α and β starting with a single value of aµ,λ. That is, starting with aµ,λ, we can first multiply each
part by k, then add smaller parts on the end, and so on.

5. Special Cases of the bµ,λ’s

Our method of expansion in terms of Schur functions in section 2 is useful not only in calculating
particular expansions, but can also be used to make general statements independent of the size of λ.
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T (−1)|Set(α)−T | λ(β(T ))
∅ -1 (10)
{2} 1 (8,2)
{4} 1 (6,4)
{8} 1 (8,2)
{2, 4} -1 (6,2,2)
{2, 8} -1 (6,2,2)
{4, 8} -1 (4,4,2)
{2, 4, 8} 1 (4,2,2,2)

Table 3. Values for (−1)|Set(α)−T | and λ(β(T )) for each possible T ⊆ Set(2, 2, 4, 2).

µ (4, 2, 2, 2) (4, 4, 2) (6, 2, 2) (6, 4) (8, 2) (10)
a(4,2,2,2),µ 1 2 1 1 2 1
−a(4,4,2),µ 0 -1 0 -1 -1 -1
−2a(6,2,2),µ 0 0 -2 -2 -2 -2
a(6,4),µ 0 0 0 1 0 1
2a(8,2),µ 0 0 0 0 2 2
−a(10),µ 0 0 0 0 0 -1
Sum for each µ 1 1 -1 -1 1 0

Table 4. Values for aγ,µ used to compute Z(2,2,4,2) =
∑

µ`n fµ,(2,2,4,2)Zµ.

We can use the fact that bµ,λ can be expressed as aµ,λ to prove further results, in particular that
1. DZ(n) = s(n)

2. DZ(1n) = s1n

3. DZ(2k,1n−2k) = s(2k,1n−2k) ∀ k
4. DZ(3k,1n−3k) = s(3,1n−3) − s(22,1n−4) ∀ k
5. DZ(3,2,1n−5) = s(3,2,1n−5) − 2s(23,1n−6) − s(22,1n−4)

6. DZ(4,1n−4) = s(4,1n−4) − s(3,2,1n−5) + s(22,1n−4) + s(23,1n−6)

The proof of 1 was given above. The proofs of the others involve using the combinatorial interpretation
of the coefficients that arise in (2.1) and defining some appropriate involutions to simplify the sum.

6. Applications of Our Main Result

As noted in the introduction, one application of our main result is to give a combinatorial interpretation
of the expansion of Zα in terms of Zλ’s, where α is a composition of n and λ is a partition of n. We noted
that if Zα =

∑

µ`n fµ,αZµ, then

fµ,α = 〈Zα, DZµ〉 =
∑

T⊆Set(α)

(−1)|Set(α)−T |aλ(β(T )),µ.

We now present an example of this fact; we will expand Z(2,2,4,2) as a sum of Zλ’s indexed by partitions of
10.

Table 3 tells us that

fµ,(2,2,4,2) = a(4,2,2,2),µ − a(4,4,2),µ − 2a(6,2,2),µ + a(6,4),µ + 2a(8,2),µ − a(10),µ.

Then Table 4 gives that Z(2,2,4,2) = Z(4,2,2,2) + Z(4,4,2) − Z(6,2,2) − Z(6,4) + Z(8,2).
As another application of our results is that we can give a combinatorial interpretation of the coefficients

that arise in the expansion of a Schur function sγ in terms of the Zλ’s where , γ, λ ` n. That is, we can give
a combinatorial interpretation of eµ,γ where sγ =

∑

µ`n eµ,γZµ.

Note that by 2.3, sγ =
∑

µ K−1
µ,γhµ, so that
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λ (3, 2, 1) (4, 1, 1) (3, 3) (4, 2) (5, 1) (6)
a(3,2,1),λ 1 0 1 0 1 1
−a(4,1,1),λ 0 -1 0 -1 -1 -1
−a(3,3),λ 0 0 -1 0 0 -1
a(5,1),λ 0 0 0 0 1 1
Sum for each λ 1 -1 0 -1 1 0

Table 5. Values for aγ,λ used to compute s(3,2,1) =
∑

µ`n eµ,(3,2,1)Zµ.

eλ,γ = 〈sγ , DZλ〉
= 〈

∑

µ

K−1
µ,γhµ,

∑

β≤rλ

aβ,λmβ〉

=
∑

β≤rλ

K−1
β,γaβ,λ.

We now present an example by expanding s(3,2,1) as a sum of ribbon Schur functions indexed by parti-
tions. We can easily see that s(3,2,1) = h1h2h3 − h1h1h4 − h3h3 + h1h5 by writing down all the special rim
hook tabloids of shape (3, 2, 1). Then

〈s(3,2,1), DZλ〉 = a(3,2,1),λ − a(4,1,1),λ − a(3,3),λ + a(5,1),λ).

In Table 5, we present the relevant values of aµ,λ.
Thus

s(3,2,1) = Z(3,2,1) − Z(4,1,1) − Z(4,2) + Z(5,1).

This may not be the most efficient algorithm in all cases, for example another approach is to use a result
of Lascoux and Pragacz [7] which gives the expansion of a Schur function as a product of ribbon Schur
functions using a determinantal formula. Any product ribbon Schur functions can be simplified to a sum
of ribbon Schur functions. However the ribbon Schur functions that result from such an expansion are just
arbitrary Zα where α is a composition. Thus one would need to expand Zα =

∑

λ`n fλ,αZλ, where α is a
composition of n and λ is a partition of n, as we did above. In special cases, such as when γ is a double
hook, this method may be more efficient. However this method does not give a combinatorial interpretation
of the coefficients of the Zλ’s that arise in the expansion.

7. Conclusions and Further Research

In this paper we have given combinatorial interpretations of the coefficients in the expansion of DZλ in
terms of the monomial symmetric functions. We also found more indirect combinatorial interpretations of
the expansion DZλ in terms of the Schur functions by using the inverse Kostka matrix. Moreover, we have
given explicit formulas for such coefficients in many special cases.

There are many unanswered questions in this area. Of particular interest is what happens when we
apply the ω transformation to DZλ. That is, recall the ω : Λn → Λn is defined by the fact for all λ ` n,
ω(hλ) = eλ. Then the question is: can we give a combinatorial interpretation of ω(DZλ) in terms of {Zλ}λ`n

or {DZλ}λ`n? We can clearly give a combinatorial interpretations of ω(DZλ) in terms of {fλ}λ`n, since we
can already expand DZ in terms of {mλ}λ`n and ω(mλ) = fλ.

We also examined the coefficients in the expansion in terms of the power and elementary symmetric
functions. Again the coefficients that arise in such expansions are not all positive. Thus another unanswered
question is to find good combinatorial interpretations for the coefficients in the expansion of DZλ in terms
of the other standard bases for the space of symmetric functions.
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