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Flag arrangements and triangulations of products of simplices.

Federico Ardila and Sara Billey

Abstract. We investigate the line arrangement that results from intersecting d complete flags in Cn. We
give a combinatorial description of the matroid Tn,d that keeps track of the linear dependence relations
among these lines.

We prove that the bases of the matroid Tn,3 characterize the triangles with holes which can be tiled with
unit rhombi. More generally, we provide evidence for a conjectural connection between the matroid Tn,d,
the triangulations of the product of simplices ∆n−1 ×∆d−1, and the arrangements of d tropical hyperplanes
in tropical (n − 1)-space.

Our work provides a simple and effective criterion to ensure the vanishing of many Schubert structure
constants in the flag manifold, and a new perspective on Billey and Vakil’s method for computing the
non-vanishing ones.

Résumé. Nous étudions l’arrangement de droites qui résulte de l’intersection de d drapeaux complets dans
Cn. Nous donnons une description combinatoire du matroide Tn,d défini par les dépendances linéaires entre
ces droites.

Nous démontrons que les bases du matroide Tn,3 caractérisent les triangles sans trou qui peuvent être
pavés par des losanges unitaires. Plus généralement, nous étayons une relation conjecturale entre le matroide
Tn,d, les triangulations du produit de simplexes ∆n−1×∆d−1 et les arrangements de d hyperplans tropicaux
dans l’espace tropical de dimension n − 1.

Nos travaux produisent un critère simple et efficace pour déterminer quand de nombreuses constantes
de structure de Schubert sont nulles, et une nouvelle façon de voir la méthode de Billey et Vakil pour calculer
celles qui sont non-nulles..

1. Introduction.

Let E1
•
, . . . , Ed

•
be d generically chosen complete flags in Cn. Write

Ek
•

= {{0} = Ek
0 ⊂ Ek

1 ⊂ · · · ⊂ Ek
n = C

n},

where Ek
i is a vector space of dimension i. Consider the set En,d of one-dimensional intersections determined

by the flags; that is, all lines of the form E1
a1

∩ E2
a2

∩ · · · ∩ Ed
ad

.
The initial goal of this paper is to characterize the line arrangements Cn which arise in this way from

d generically chosen complete flags. We will then show an unexpected connection between these line ar-
rangements and an important and ubiquitous family of subdivisions of polytopes: the triangulations of the
product of simplices ∆n−1 × ∆d−1. These triangulations appear naturally in studying the geometry of the
product of all minors of a matrix [1], tropical geometry [4], and transportation problems [17]. To finish,
we will illustrate some of the consequences that the combinatorics of these line arrangements have on the
Schubert calculus of the flag variety.

The results of the paper are roughly divided into four parts as follows. First of all, Section 2 is devoted
to studying the line arrangement determined by the intersections of a generic arrangement of hyperplanes.
This will serve as a warmup before we investigate generic arrangements of complete flags, and the results we
obtain will be useful in that investigation.
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The second part consists of Sections 3 and 4, where we will characterize the line arrangements that
arise as intersections of a “matroid-generic” arrangement of d flags in Cn. Section 3 is a short discussion
of the combinatorial setup that we will use to encode these geometric objects. In Section 4, we propose
a combinatorial definition of a matroid Tn,d, and show that it is the matroid of the line arrangement of
any d flags in Cn which are generic enough. Finally, we show that these line arrangements are completely
characterized combinatorially: any line arrangement in Cn whose matroid is Tn,d arises as an intersection of
d flags.

The third part establishes a surprising connection between these line arrangements and an important
class of subdivisions of polytopes. The bases of Tn,3 exactly describe the ways of punching n triangular holes
into the equilateral triangle of size n, so that the resulting holey triangle can be tiled with unit rhombi. A
consequence of this is a very explicit geometric representation of Tn,3. We show these results in Section 5. We
then pursue a higher-dimensional generalization of this result. In Section 6, we suggest that the fine mixed
subdivisions of the Minkowski sum n∆d−1 are an adequate (d−1)-dimensional generalization of the rhombus
tilings of holey triangles. We give a completely combinatorial description of these subdivisions. Finally, in
Section 7, we prove that each pure mixed subdivision of the Minkowski sum n∆d−1 (or equivalently, each
triangulation of the product of simplices ∆n−1 × ∆d−1) gives rise to a basis of Tn,d. We conjecture that
every basis of Tn,d arises in this way. In fact, we conjecture that every basis of Tn,d arises from a coherent
subdivision or, equivalently, from an arrangement of d tropical hyperplanes in tropical (n − 1)-space.

The fourth and last part of the paper, Section 8, presents some of the consequences of our work in the
Schubert calculus of the flag variety. We start by recalling Eriksson and Linusson’s permutation arrays,
and Billey and Vakil’s related method for explicitly intersecting Schubert varieties. In Section 8.1 we show
how the geometric representation of the matroid Tn,3 of Section 5 gives us a new perspective on Billey and
Vakil’s method for computing the structure constants cuvw of the cohomology ring of the flag variety. Finally,
Section 8.2 presents a simple and effective criterion for guaranteeing that many Schubert structure constants
are equal to zero.

2. The lines in a generic hyperplane arrangement.

Before thinking about flags, let us start by studying the slightly easier problem of understanding the
matroid of lines of a generic arrangement of m hyperplanes in Cn. We will start by presenting, in Proposition
2.1, a combinatorial definition of this matroid Hn,m. Theorem 2.2 then shows that this is, indeed, the right
matroid. As it turns out, this warmup exercise will play an important role in Section 4.

Throughout this section, we will consider an arrangement of m generically chosen hyperplanes H1, . . . , Hm

in Cn passing through the origin. For each subset A of [m], let

HA =
⋂

a∈A

Ha.

By genericity,

dimHA =

{

n − |A| if |A| ≤ n,
0 otherwise.

Therefore, the set Ln,m of one-dimensional intersections of the His consists of the
(

m
n−1

)

lines HA for |A| =
n − 1.

There are several “combinatorial” dependence relations among the lines in Ln,m, as follows. Each t-
dimensional intersection HB (where B is an (n − t)-subset of [m]) contains the lines HA with B ⊆ A.
Therefore, in an independent set HA1

, . . . , HAk
of Ln,m, we cannot have t + 1 Ais which contain a fixed

(n − t)-set B.
At first sight, it seems intuitively clear that, in a generic hyperplane arrangement, these will be the only

dependence relations among the lines in Ln,m. This is not as obvious as it may seem: let us illustrate a
situation in L4,5 which is surprisingly close to a counterexample to this statement. For simplicity, we will
draw the projective picture, and denote hyperplanes H1, . . . , H5 simply by 1, . . . , 5, and an intersection like
H124 simply by 124.

In Figure 1, we have started by drawing the triangles T and T ′ with vertices 124, 234, 134 and 125, 235, 135,
respectively. The three lines connecting the pairs (124, 125), (234, 235) and (134, 135), are the lines 12, 23,
and 13, respectively. They intersect at the point 123, so that the triangles T and T ′ are perspective with
respect to this point.
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Figure 1. The Desargues configuration in L4,5.

Now, Desargues’ theorem applies, and it predicts an unexpected dependence relation. It tells us that the
three points of intersection of the corresponding sides of T and T ′ are collinear. The lines 14 (which connects
124 and 134) and 15 (which connects 125 and 135) intersect at the point 145. Similarly, 24 and 25 intersect
at 245, and 34 and 35 intersect at 345. Desargues’ theorem says that the points 145, 245, and 345 are
collinear. In principle, this new dependence relation does not seem to be one of our predicted “combinatorial
relations”. Somewhat surprisingly, it is: it simply states that these three points are on the line 45.

The previous discussion illustrates two points. First, it shows that Desargues’ theorem is really a
combinatorial statement about incidence structures, rather than a geometric statement about points on the
Euclidean plane. Second, and more important to us, it shows that even five generic hyperplanes in C4

give rise to interesting geometric configurations. It is not unreasonable to think that larger arrangements
Ln,m will contain other configurations, such as the Pappus configuration, which have nontrivial and honestly
geometric dependence relations that we may not have predicted.

Having told our readers what they might need to worry about, we now intend to convince them not to
worry about it.

First we show that the combinatorial dependence relations in Ln,m are consistent, in the sense that they
define a matroid.

Proposition 2.1. Let I consist of the collections I of subsets of [m], each containing n − 1 elements,
such that no t + 1 of the sets in I contain an (n − t)-set. In symbols,

I :=

{

I ⊆

(

[m]

n − 1

)

such that for all S ⊆ I,
∣

∣

⋂

A∈S

A
∣

∣ ≤ n − |S|

}

.

Then I is the collection of independent sets of a matroid Hn,m.

Proof. Omitted. �

Then we show that this matroid Hn,m is the one determined by the lines in a generic hyperplane
arrangement.

Theorem 2.2. If a central1 hyperplane arrangement A = {H1, . . . , Hm} in Cn is generic enough, then
the matroid of the

(

m
n−1

)

lines HA is isomorphic to Hn,m.

Proof. We already observed that the one-dimensional intersections of A satisfy all the dependence
relations of Hn,m. Now we wish to show that, if A is “generic enough”, these are the only relations.

It is enough to construct one “generic enough” hyperplane arrangement, and we do it as follows. Consider
the m coordinate hyperplanes in Cm, numbered J1, . . . , Jm. Pick a sufficiently generic n-dimensional subspace
V of Cm, and consider the ((n − 1)-dimensional) hyperplanes H1 = J1 ∩ V, . . . , Hm = Jm ∩ V in V . The
theory of Dilworth truncations of matroids precisely guarantees that V can be chosen in such a way that the
lines determined by the His satisfy no new relations. We omit the details. �

3. From lines in a flag arrangement to lattice points in a simplex.

Having understood the matroid of lines in a generic hyperplane arrangement, we proceed to study the
case of complete flags. In the following two sections, we will describe the matroid of lines of a generic
arrangement of d complete flags in Cn. We start, in this section, with a short discussion of the combinatorial

1A hyperplane arrangement is central if all its hyperplanes go through the origin.
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setup that we will use to encode these geometric objects. We then propose, in Section 4, a combinatorial
definition of the matroid Tn,d, and show that this is, indeed, the matroid we are looking for.

Let E1
•
, . . . , Ed

•
be d generically chosen complete flags in Cn. Write

Ek
•

= {{0} = Ek
0 ⊂ Ek

1 ⊂ · · · ⊂ Ek
n = C

n},

where Ek
i is a vector space of dimension i.

These d flags determine a line arrangement En,d in Cn as follows. Look at all the possible intersections
of the subspaces under consideration; they are of the form Ea1,...,ad

= E1
a1
∩E2

a2
∩· · ·∩Ed

ad
. We are interested

in the one-dimensional intersections. Since the Ek
•
s were chosen generically, Ea1,...,ad

has codimension (n −
a1) + . . . + (n − ad) (or n if this sum exceeds n). Therefore, the one-dimensional intersections are the lines

Ea1,...,ad
for a1 + · · ·+ ad = (d− 1)n + 1. There are

(

n+d−2
d−1

)

such lines, corresponding to the ways of writing
n − 1 as a sum of d nonnegative integers n − a1, . . . , n − ad.

Let Tn,d be the set of lattice points in the following (d − 1)-dimensional simplex in Rd:

{ (x1, . . . , xd) ∈ R
d | x1 + · · · + xd = n − 1 and xi ≥ 0 for all i}.

The d vertices of this simplex are (n − 1, 0, 0, . . . , 0), (0, n − 1, 0, . . . , 0), . . . , (0, 0, . . . , n − 1).
For example, Tn,3 is simply a triangular array of dots of size n; that is, with n dots on each side. We

will call Tn,d the (d − 1)-simplex of size n.
It will be convenient to identify the line Ea1,...,ad

(where a1 + · · ·+ad = (d−1)n+1 and 1 ≤ ai ≤ n) with
the vector of codimensions (n − a1, . . . , n − ad). This clearly gives us a one-to-one correspondence between
the set Tn,d and the lines in our line arrangement En,d.

We illustrate this correspondence for d = 3 and n = 4 in Figure 2. This picture is easier to visualize
in real projective 3-space. Now each one of the flags E•, F•, and G• is represented by a point in a line in a
plane. The lines in our line arrangement are now the 10 intersection points we see in the picture.

F

G

E 300

210 201

120 111 102

012 003030 021

144

414

432

441

342

243

333

423

324

234

Figure 2. The lines determined by three flags in C4, and the array T4,3.

We are interested in the dependence relations among the lines in the line arrangement En,d. As in the
case of hyperplane arrangements, there are several combinatorial relations which arise as follows. Consider a
k-dimensional subspace Eb1,...,bd

with b1+ · · ·+bd = (d−1)n+k. Every line of the form Ea1,...,ad
with ai ≤ bi

is in this subspace, so no k + 1 of them can be independent. The corresponding points (n − a1, . . . , n − ad)
are the lattice points inside a parallel translate of Tk,d, the simplex of size k, in Tn,d. In other words, in a
set of independent lines of our arrangement, we cannot have more than k lines whose corresponding dots are
in a simplex of size k in Tn,d.

For example, no four of the lines E144, E234, E243, E324, E333, and E342 are independent, because they
are in the 3-dimensional hyperplane E344. The dots corresponding to these six lines form the upper T3,3

found in our T4,3.
In principle, there could be other hidden dependence relations among the lines in En,d. The goal of

the next section is to show that this is not the case. In fact, these combinatorial relations are the only
dependence relations of the line arrangement associated to d generically chosen flags in Cn.

We will proceed as in the case of hyperplane arrangements. We will start by showing that the combi-
natorial relations do give rise to a matroid Tn,d. We will then show that this is, indeed, the matroid we are
looking for.
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4. The lines in a generic flag arrangement.

We first show that the combinatorial dependence relations defined in Section 3 do determine a matroid.

Theorem 4.1. Let In,d be the collection of subsets I of Tn,d such that every parallel translate of Tk,d

contains at most k points of I, for every k ≤ n.
Then In,d is the collection of independent sets of a matroid Tn,d on the ground set Tn,d.

Proof. Omitted. �

We now show that the matroid Tn,d of Section 4 is, indeed, the matroid that arises from intersecting d
flags in Cn which are generic enough.

Theorem 4.2. If d complete flags E1
•
, . . . , Ed

•
in Cn are generic enough, then the matroid of the

(

n+d−2
d−1

)

lines Ea1,...,ad
is isomorphic to Tn,d.

Proof. As mentioned in Section 3, the one-dimensional intersections of the Ei
•
s satisfy the following

combinatorial relations: each k dimensional subspace Eb1...bd
with b1 + · · ·+ bd = (d− 1)n + k, contains the

lines Ea1...ad
with ai ≤ bi; therefore, it is impossible for k +1 of these lines to be independent. The subspace

Eb1...bd
corresponds to the simplex of dots which is labelled Tn−b1,...,n−bd

, and has size n −
∑

(n − bi) = k.
The lines Ea1...ad

with ai ≤ bi correspond precisely the dots in this copy of Tk,d. So these “combinatorial
relations” are precisely the dependence relations of Tn,d.

Now we need to show that, if the flags are “generic enough”, these are the only linear relations among
these lines. It is enough to construct one set of flags which satisfies no other relations.

Consider a set H of d(n − 1) hyperplanes Hi
j in Cn (for 1 ≤ i ≤ d and 1 ≤ j ≤ n − 1) which are generic

in the sense of Theorem 2.2, so the only dependence relations among their one-dimensional intersections are
the combinatorial ones. Now, for i = 1, . . . , d, define the flag Ei

•
by:

Ei
n−1 = Hi

n−1

Ei
n−2 = Hi

n−1 ∩ Hi
n−2

...

Ei
1 = Hi

n−1 ∩ Hi
n−2 ∩ · · · ∩ Hi

1,

We show that these d flags are generic enough; in other words, the matroid of their one-dimensional inter-
sections is Tn,d. We omit the details. �

With Theorem 4.2 in mind, we will say that the complete flags E1
•
, . . . , Ed

•
in Cn are matroid-generic if

the matroid of the
(

n+d−2
d−1

)

lines Ea1,...,ad
is isomorphic to Tn,d.

We conclude this section by showing that the one-dimensional intersections of matroid-generic flag
arrangements are completely characterized by their combinatorial properties.

Proposition 4.3. If a line arrangement L in Cn has matroid Tn,d, then it can be realized as the
arrangement of one-dimensional intersections of d complete flags in Cn.

Proof. Omitted. �

5. Rhombus tilings of holey triangles and the matroid Tn,3.

Let us change the subject for a moment.
Let T (n) be an equilateral triangle with side length n. Suppose we wanted to tile T (n) using unit rhombi

with angles equal to 60◦ and 120◦. It is easy to see that this task is impossible, for the following reason.
Cut T (n) into n2 unit equilateral triangles; n(n + 1)/2 of these triangles point upward, and n(n − 1)/2 of
them point downward. Since a rhombus always covers one upward and one downward triangle, we cannot
use them to tile T (n).

Suppose, then, that we make n holes in the triangle T (n), by cutting out n of the upward triangles. Now
we have an equal number of upward and downward triangles, and it may or may not be possible to tile the
remaining shape with rhombi.

The main question we address in this section is the following:
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Question 5.1. Given n holes in T (n), is there a simple criterion to determine whether there exists a
rhombus tiling of the holey triangle that remains?

A rhombus tiling is equivalent to a perfect matching between the upward triangles and the downward
triangles. Hall’s theorem then gives us an answer to Question 5.1: It is necessary and sufficient that any k
downward triangles have a total of at least k upward triangles to match to.

However, the geometry of T (n) allows us to give a simpler criterion. Furthermore, in view of Theorem
4.1, this criterion reveals an unexpected connection between these rhombus tilings and the line arrangement
determined by 3 generically chosen flags in Cn.

Theorem 5.2. Let S be a set of n holes in T (n). The triangle T (n) with holes at S can be tiled with
rhombi if and only if every T (k) in T (n) contains at most k holes, for all k ≤ n.

Proof. Omitted. �

Corollary 5.3. The possible locations of n holes for which a rhombus tiling of the holey triangle T (n)
exists correspond to the bases of the matroid Tn,3.

Proof. This is just a restatement of Theorem 5.2. �

Corollary 5.3 allows us to say more about the structure of the matroid Tn,3. We first remind the reader
of the definition of an important family of matroids, called cotransversal matroids. For more information,
we refer the reader to [13].

Let G be a directed graph with vertex set V , and let A = {v1, . . . , vr} be a subset of V . We say that
an r-subset B of V can be linked to A if there exist r vertex-disjoint directed paths whose initial vertex is
in B and whose final vertex is in A. We will call these r paths a routing from B to A. The collection of
r-subsets which can be linked to A are the bases of a matroid denoted L(G, A). Such a matroid is called a
strict gammoid or a cotransversal matroid.

Theorem 5.4. The matroid Tn,3 is cotransversal.

e f

g

d

k

c

h

a b

i j l

2 431

Figure 3. The graph G4.

Proof. Let Gn be the directed graph whose set of vertices is the triangular array Tn,3, where each dot
not on the bottom row is connected to the two dots directly below it. Label the dots on the bottom row
1, 2, . . . , n. Figure 3 shows G4; all the edges of the graph point down.

There is a bijection between the rhombus tilings of the holey triangles of size n, and the routings (sets
of n non-intersecting paths) in the graph Gn which end at vertices 1, 2, . . . , n. This correspondence is best
understood in an example; see Figure 4. We leave it to the reader to check the details.

In this correspondence, the holes of the holey triangle correspond to the starting points of the n paths
in the graph. From Corollary 5.3, it follows that Tn,3 is the cotransversal matroid L(Gn, [n]). �

Theorem 5.5. Assign algebraically independent weights to the edges of Gn.2 For each dot D in the
triangular array Tn,3 and each 1 ≤ i ≤ n, let vD,i be the sum of the weights of all paths3 from dot D to dot
i on the bottom row.

Then the path vectors vD = (vD,1, . . . , vD,n) are a geometric representation of the matroid Tn,3.

2Integer weights which increase extremely quickly will also work.
3The weight of a path is defined to be the product of the weights of its edges.
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1 2 3 4

Figure 4. A tiling of a holey T (4) and the corresponding routing of G4.

For example, the top dot of T4,3 in Figure 3 would be assigned the path vector (acg, ach+adi+bei, adj+
bej + bfk, bf l) Similarly, focusing our attention on the top three rows, the representation we obtain for the
matroid T3,3 is given by the columns of the following matrix:





1 0 0 c 0 ac
0 1 0 d e ad + be
0 0 1 0 f bf





Proof of Theorem 5.5. This is a consequence of the Lindström-Gessel-Viennot lemma [7, 8, 10, 12];
we omit the details. �

The very simple and explicit representation of Tn,3 of Theorem 5.5 will be shown in Section 8 to have
an unexpected consequence in the Schubert calculus: it provides us with a reasonably efficient method for
computing Schubert structure constants in the flag variety.

6. Fine mixed subdivisions of n∆d−1 and triangulations of ∆n−1 × ∆d−1.

The surprising relationship between the geometry of three flags in Cn and the rhombus tilings of holey
triangles is useful to us in two ways: it explains the structure of the matroid Tn,3, and it clarifies the
conditions for a rhombus tiling of such a region to exist. We now investigate a similar connection between
the geometry of d flags in Cn, and certain well-studied (d − 1)-dimensional analogs of these tilings.

Instead of thinking of rhombus tilings of a holey triangle, it will be slightly more convenient to think of
them as lozenge tilings of the triangle: these are the tilings of the triangle using unit rhombi and upward
unit triangles. A good high-dimensional analogue of the lozenge tilings of the triangle n∆2 are the fine mixed
subdivisions of the simplex n∆d−1; we briefly recall their definition. Define a fine mixed cell of the simplex
∆d−1 to be a Minkowski sum B1 + · · ·+ Bn, where the Bis are faces of ∆d−1 which lie in independent affine
subspaces, and whose dimensions add up to d − 1. A fine mixed subdivision of n∆d−1 is a subdivision of
n∆d−1 into fine mixed cells[15, Theorem 2.6].

In the same way that we identified arrays of triangles with triangular arrays of dots in Section 5, we
can identify the array of possible locations of the simplices in n∆d−1 with the array of dots Tn,d defined in
Section 3. A conjectural generalization of Corollary 5.3, which we now state, would show that fine mixed
subdivisions of n∆d−1 are also closely connected to the matroid Tn,d.

Conjecture 6.1. The possible locations of the simplices in a fine mixed subdivision of n∆d−1 are
precisely the bases of the matroid Tn,d.

In the remainder of this section, we will give a completely combinatorial description of the fine mixed
subdivisions of n∆d−1. We will use this description to prove one direction of this conjecture in Section 7.

We start by recalling the one-to-one correspondence between the fine mixed subdivisions of n∆d−1 and
the triangulations of the polytope ∆n−1 ×∆d−1. This equivalent point of view has the drawback of bringing
us to a higher-dimensional picture. Its advantage is that it simplifies greatly the combinatorics of the tiles,
which are now just simplices.

Let v1, . . . , vn and w1, . . . , wd be the vertices of ∆n−1 and ∆d−1, so that the vertices of ∆n−1 × ∆d−1

are of the form vi × wj . A triangulation T of ∆n−1 × ∆d−1 is given by a collection of simplices. For each
simplex t in T , consider the fine mixed cell whose i-th summand is wawb . . . wc, where a, b, . . . , c are the
indexes j such that vi × wj is a vertex of t. These fine mixed cells constitute the fine mixed subdivision of
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n∆d−1 corresponding to T . (This bijection is only a special case of the more general Cayley trick, which is
discussed in detail in [15].)

For instance, Figure 5 shows a triangulation of the triangular prism ∆1 × ∆2 = 12 × ABC, and the
corresponding fine mixed subdivision of 2∆2, whose three tiles are ABC + B, AC + AB, and C + ABC.

B

2C

C

2B

1C

1A

2A

1B

A

Figure 5. The Cayley trick.

Consider the complete bipartite graph Kn,d whose vertices are v1, . . . , vn and w1, . . . , wd. Each vertex
of ∆n−1 × ∆d−1 corresponds to an edge of Kn,d. The vertices of each simplex in ∆n−1 × ∆d−1 determine a
subgraph of Kn,d. Each triangulation of ∆n−1 ×∆d−1 is then encoded by a collection of subgraphs of Kn,d.
Figure 6 shows the three trees that encode the triangulation of Figure 5.

2

A

2

1

C

B

C

B

1

C

B

A

2

A

1

Figure 6. The trees corresponding to the triangulation of Figure 5.

Our next result is a combinatorial characterization of the triangulations of ∆n−1 × ∆d−1.

Proposition 6.2. A collection of subgraphs t1, . . . , tk of Kn,d encodes a triangulation of ∆n−1 × ∆d−1

if and only if:

(1) Each ti is a spanning tree.
(2) For each ti and each internal4 edge e of ti, there exists an edge f and a tree tj with tj = ti − e∪ f .
(3) There do not exist two trees ti and tj, and a circuit C of Kn,d which alternates between edges of ti

and edges of tj.

Proof. Omitted. �

In light of Proposition 6.2, we will call a collection of spanning trees satisfying the above properties a
triangulation of ∆n−1 × ∆d−1.

7. Subdivisions of n∆d−1 and the matroid Tn,d.

Having given a combinatorial characterization of the triangulations of the polytope ∆n−1 × ∆d−1 in
Proposition 6.2, we are now in a position to prove the forward direction of Conjecture 6.1, which relates
these triangulations to the matroid Tn,d. The following combinatorial lemma will play an important role in
our proof.

Proposition 7.1. Let n, d, and a1, . . . , ad be non-negative integers such that a1 + · · · + ad ≤ n − 1.
Suppose we have a coloring of the n(n − 1) edges of the directed complete graph Kn with d colors, such that
each color defines a poset on [n]; in other words,

(a) the edges u → v and v → u have different colors, and
(b) if u → v and v → w have the same color, then u → w has that same color.

4An edge of a tree is internal if it is not a leaf.
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Call a vertex v outgoing if, for every i, there exist at least ai vertices w such that v → w has color i.
Then the number of outgoing vertices is at most n − a1 − · · · − ad.

Proof. Omitted. The intuition is the following. We have d poset structures on the set [n], and this
statement essentially says that we cannot have “too many” elements which are “very large” in all the
posets. �

We have now laid down the necessary groundwork to prove one direction of Conjecture 6.1.

Proposition 7.2. In any fine mixed subdivision of n∆d−1,

(a) there are exactly n tiles which are simplices, and
(b) the locations of the n simplices give a basis of the matroid Tn,d.

Proof of Proposition 7.2. Let us look back at the way we defined the correspondence between a
triangulation T of ∆n−1 × ∆d−1 and a fine mixed subdivision f(T ) of n∆d−1. It is clear that the simplices
f(t) of f(T ) arise from those simplices t of T whose vertices are vi × w1, . . . , vi × wd (for some i), and one
vj × wg(j) for each j 6= i. Furthermore, the location of f(t) in n∆d−1 is given by the sum of the wg(j)s.

3 4

vv 5vv v32 4

2

1

w w1 ww

Figure 7. A spanning tree of K5,4.

For instance the spanning tree of K5,4 shown in Figure 7 gives rise to a simplex in a fine mixed subdivision
of 5∆3 = 5w1w2w3w4 given by the Minkowski sum w1 + w1 + w3 + w1w2w3w4 + w2. The location of this
simplex in 5∆3 corresponds to the point (2, 1, 1, 0) of T5,4, because the Minkowski sum above contains two
w1 summands, one w2, and one w3.

The simplices of the fine mixed subdivision of n∆d−1 come from spanning trees t of Kn,d for which one
vertex vi has degree d and the other vjs have degree 1. The coordinates of the location of f(t) in n∆d−1 are
simply (degt w1 − 1, . . . , degt wd − 1). Call such a simplex, and the corresponding tree, i-pure. For instance,
in Figure 5, there is a 1-pure tree and a 2-pure tree, which give simplices in locations (0, 1, 0) and (0, 0, 1) of
2∆2, respectively.
Proof of (a). We prove that in a triangulation T of ∆n−1×∆d−1 there is exactly one i-pure simplex for each
i with 1 ≤ i ≤ n. The details are omitted.
Proof of (b). The idea is to construct a coloring of the directed complete graph Kn which economically
stores a description of the n pure trees, and invoke Proposition 7.1. Again, we omit the details. �

For the converse of Conjecture 6.1, we would need to show that every basis of Tn,d arises from a fine
mixed subdivision of n∆d−1. We conjecture a stronger result.

Conjecture 7.3. For any basis B of Tn,d, there is a coherent fine mixed subdivision of n∆d−1 whose
n simplices are located at B.

Given the correspondence between coherent fine mixed subdivisions of n∆d−1 and the combinatorial
types of arrangements of d generic tropical hyperplanes in tropical (n − 1)-space [4, 15], Conjecture 7.3 is
an invitation to study more closely those combinatorial types. This can naturally be thought of as the study
of tropical oriented matroids.

8. Applications to Schubert calculus.

In this section, we show some of the implications of our work in the Schubert calculus of the flag variety.
Throughout this section, we will assume some familiarity with the Schubert calculus, though we will recall
some of the definitions and conventions that we will use; for more information, see for example [6, 11]. We
will also need some of the results of Eriksson and Linusson [5] and Billey and Vakil [2] on Schubert varieties
and permutation arrays.

Eriksson and Linusson [5] introduced certain higher-dimensional analogs of permutation matrices, called
permutation arrays. A permutation array is an array of dots in the cells of a d-dimensional n × n × · · · × n
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box, satisfying some quite restrictive properties. From a permutation array P , via a simple combinatorial
rule, one can construct a rank array of integers, also of shape [n]d. We denote it rk P .

This definition is motivated by the observation that the relative position of d flags E1
•
, . . . , Ed

•
in F`n is

described by a unique permutation array P , via the equations

dim
(

E1
x1

∩ · · · ∩ Ed
xd

)

= rkP [x1, . . . , xd] for all 1 ≤ x1, . . . , xd ≤ n.

This result initiated the study of permutation array schemes, which generalize Schubert varieties in the flag
variety F`n.

The relative position of d generic flags is described by the transversal permutation array

{

(x1, . . . , xd) ∈ [n]d
∣

∣

d
∑

i=1

xi = (d − 1)n + 1
}

.

The dot at position (x1, . . . , xd) represents a one-dimensional intersection E1
x1

∩ · · · ∩ Ed
xd

. Naturally, we
identify the dots in the transversal permutation array with the corresponding element of the matroid Tn,d.

Given a fixed flag E• in Cn and a permutation w in Sn, denote the Schubert cell and Schubert variety
by

X◦

w(E•) = {F• |E• and F• have relative position w}

= {F• | dim(Ei ∩ Fj) = rkw[i, j] for all 1 ≤ i, j ≤ n.}, and

Xw(E•) = {F• | dim(Ei ∩ Fj) ≥ rkw[i, j] for all 1 ≤ i, j ≤ n.},

respectively.
A Schubert problem asks for the number of flags F• whose relative positions with respect to d given fixed

flags E1
•
, . . . , Ed

•
are given by the permutations w1, . . . , wd. This question only makes sense when

X = Xw1(E1
•
) ∩ · · · ∩ Xwd(Ed

•
)

is 0-dimensional; that is, when l(w1)+· · ·+l(wd) =
(

n
2

)

. If E1
•
, . . . , Ed

•
are sufficiently generic, the intersection

X has a fixed number of points cw1...wd which only depends on the permutations w1, . . . , wd.
This question is a fundamental one for several reasons. The numbers cw1...wd which answer this question

appear in several different contexts. For instance, the cycles [Xw] corresponding to the Schubert varieties
form a Z-basis for the cohomology ring of the flag variety F`n, and the numbers cuvw are the multiplicative
structure constants. (For this reason, if we know the answer to all Schubert problems with d = 3, we can
easily obtain them for higher d.) The analogous structure constants in the Grassmannian are the Littlewood-
Richardson coefficients, which are much better understood. For instance, even though the cuvws are known
to be positive integers, it is a long standing open problem to find a combinatorial interpretation of them.

Billey and Vakil [2] showed that the permutation arrays of Eriksson and Linusson can be used to explicitly
intersect Schubert varieties, and compute the numbers cw1...wd .

Theorem 8.1. (Billey-Vakil, [2]) Suppose that

X = Xw1(E1
•
) ∩ · · · ∩ Xwd(Ed

•
)

is a 0-dimensional and nonempty intersection, with E1
•
, . . . , Ed

•
generic.

(1) There exists a unique permutation array P ⊂ [n]d+1, easily constructed from w1, . . . , wd, such that

dim
(

E1
x1

∩ · · · ∩ Ed
xd

∩ Fxd+1

)

= rkP [x1, . . . , xd, xd+1],

for all F• ∈ X and all 1 ≤ x1, . . . , xd+1 ≤ n.
(2) Given the permutation array P , and a vector va1,...,ad

in each one-dimensional intersection Ea1,...,ad
=

E1
a1

∩ · · · ∩ Ed
ad

, we can write down an explicit set of polynomial equations defining X.

Theorem 8.1 highlights the importance of studying the line arrangements En,d determined by intersecting
d generic complete flags in Cn. In principle, if we are able to construct such a line arrangement, we can
compute the structure constants cuvw for any u, v, w ∈ Sn. (In practice, we still have to solve the system of
polynomial equations, which is not easy for large n.) Let us make two observations in this direction.
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8.1. Matroid genericity versus Schubert genericity. We have been talking about the line arrange-
ment En,d determined by a generic flag arrangement E1

•
, . . . , Ed

•
in Cn. We need to be careful, because we

have given two different meanings to the word generic.
In Sections 3 and 4, we have shown that, if E1

•
, . . . , Ed

•
are sufficiently generic, then the linear dependence

relations in the line arrangement En,d are described by a fixed matroid Tn,d. Let us say that the flags are
matroid-generic if this is the case.

Recall that in the Schubert problem described by permutations w1, . . . , wd with
∑

l(wi) =
(

n
2

)

, the
0-dimensional intersection

X = Xw1(E1
•
) ∩ · · · ∩ Xwd(Ed

•
)

contains a fixed number of points cw1...wd , provided that E1
•
, . . . , Ed

•
are sufficiently generic. Let us say that

the flags are Schubert-generic if they are sufficiently generic for any Schubert problem.
These notions depend only on the line arrangement En,d. The line arrangement En,d is matroid-generic

if its matroid is Tn,d, and it is Schubert-generic if the equations of Theorem 8.1 give the correct number of
solutions to every Schubert problem.

Our characterization of matroid-generic line arrangements (i.e., our description of the matroid Tn,d)
does not tell us how to construct a Schubert-generic line arrangement. However, when d = 3 (which is the
interesting case in the Schubert calculus),the cotransversality of the matroid Tn,3 allows us to present such
a line arrangement explicitly.

Proposition 8.2. The
(

n
2

)

path vectors of Theorem 5.5 are Schubert-generic.

Proof. Omitted. �

Proposition 8.2 shows that when we plug the path vectors into the polynomial equations of Theorem
8.1, and compute the intersection X , we will have |X | = cuvw. The advantage of this point of view is that
the equations are now written in terms of combinatorial objects, without any reference to an initial choice
of flags.

Problem 8.3. Interpret combinatorially the cuvw solutions of the above system of equations, thereby
obtaining a combinatorial interpretation for the structure constants cuvw.

8.2. A criterion for vanishing Schubert structure constants. Consider the Schubert problem

X = Xw1(E1
•
) ∩ · · · ∩ Xwd(Ed

•
).

Let P ∈ [n]d+1 be the permutation array which describes the dimensions dim(E1
x1

∩ · · · ∩ Ed
xd

∩ Fxd+1
) for

any flag F• ∈ X . Let P1, . . . , Pn be the n “floors” of P , corresponding to F1, . . . , Fn, respectively. Each one
of them is itself a permutation array of shape [n]d.

Billey and Vakil proposed a simple criterion which is very efficient in detecting that many Schubert
structure constants are equal to zero.

Proposition 8.4. (Billey-Vakil, [2]) If Pn is not the transversal permutation array, then X = ∅ and
cw1...wd = 0.

Knowing the structure of the matroid Tn,d, we can strengthen this criterion as follows.

Proposition 8.5. Suppose Pn is the transversal permutation array, and identify it with the set Tn,d. If,
for some k, the rank of Pk ∩ Pn in Tn,d is greater than k, then X = ∅ and cw1...wd = 0.

Proof. Each dot in Pn corresponds to a one-dimensional intersection of the form E1
x1

∩ · · · ∩ Ed
xd

.
Therefore, each dot in Pk ∩ Pn corresponds to a line that Fk is supposed to contain, if F• is a solution to
the Schubert problem. The rank of Pk ∩ Pn is the dimension of the subspace spanned by those lines; if F•

exists, that dimension must be at most k. �

Let us see how to apply Proposition 8.5 in an example. Following the algorithm of [2], the permutations
u = v = w = 213 in S3 give rise to the four-dimensional permutation array consisting of the dots (3, 3, 1, 1),
(1, 3, 3, 2), (3, 1, 3, 2), (3, 3, 1, 2), (1, 3, 3, 3), (2, 2, 3, 3), (2, 3, 2, 3), (3, 1, 3, 3), (3, 2, 2, 3), and (3, 3, 1, 3). We
follow [5, 18] in representing it as follows:
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1

3

3 1

3
3 2

3 2 1
The three boards shown represent the three-dimensional floors P1, P2, and P3 of P , form left to right.

In each one of them, a dot in cell (i, j, k) is represented in two dimensions by a number k in cell (i, j).
It takes some practice to interpret these tables; but once one is used to them, it is very easy to proceed.

Simply notice that P2 ∩ P3 is a set of rank 3 in the matroid T3,3, and we are done! We conclude that
c213,213,213 = 0. For n = 3, this is the only vanishing cuvw which is not explained by Proposition 8.4.

We remark that there are other methods for detecting the vanishing of Schubert structure constants,
due to Knutson, Lascoux and Schutzenberger, and Purbhoo. In comparing these methods for small values of
n, we have found Proposition 8.5 to be quicker and simpler, but less complete than some of these methods.

However, Proposition 8.5 is only the very first observation that we can make from our understanding
of the structure of Tn,d. Our argument can be easily fine-tuned to explain all vanishing Schubert structure
constants with n ≤ 5. A systematic way of doing this in general would be very desirable.
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