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San Diego, California 2006

Pattern avoiding doubly alternating permutations

Erik Ouchterlony

Abstract. We study pattern avoiding doubly alternating (DA) permutations, i.e., alternating (or zigzag)
permutations whose inverse is also alternating. We exhibit a bijection between the 1234-avoiding permuta-
tions and the 1234-avoiding DA permutations of twice the size using the Robinson-Schensted correspondence.
Further, we present a bijection between the 1234- and 2134-avoiding DA permutations and we prove that
the 2413-avoiding DA permutations are counted by the Catalan numbers.

Résumé. Nous étudions les permutations qui évitent les motifs double-alternant (DA), c’est à dire, les
permutations alternantes dont l’inverse est alternante. Nous montrons, en utilisant le correspondance de
Robinson-Schensted, une bijection entre les permutations de longueur n évitant 1234 et les permutations
DA de longueur 2n évitant 1234. Nous montrons aussi, une bijection entre les permutations DA évitant 1234
et celles évitant 2134, et que les permutations DA évitant 2413 sont dénombrées par les nombres de Catalan.

1. Introduction

A permutation σ ∈ Sn is said to contain the pattern τ ∈ Sm if there is a subsequence of (the word
representation of) σ which is order equivalent to (the word representation of) τ . To distinguish between
patterns and other permutations, we will use slightly different notation. For example, the permutation
(1, 3, 2, 4) will be written as 1324 if it is used as a pattern. We will often use the matrix representation of
σ, which is the n× n 0-1-matrix having ones in the positions with matrix coordinates (i, σ(i)). It can also
be written as (Jσ(i) = jK)n

i,j=1, using Iverson’s bracket notation [9] for the characteristic function, JSK = 1
if S is true and 0 otherwise. In the figures we will use dots instead of ones and leave the zeroes empty, as in
Figure 1, to make the picture clearer. In this notation σ contains the pattern τ if some submatrix of (the
matrix representation of) σ is equal to (the matrix representation of) τ . The permutations not containing τ
are called τ-avoiding, and we write

Sn(τ1, τ2, . . . , τt) = {σ ∈ Sn : σ is τi-avoiding for all i = 1, . . . , t}.

A word, e.g., a permutation, w = (wi)
n
i=1, is (up-down)-alternating if w2i−1 < w2i and w2i > w2i+1 for

all applicable i. This means that the word alternates between rises and descents, beginning with a rise. If
it instead starts with a descent, it is called down-up-alternating.

A permutation σ is doubly alternating (DA) if both σ and σ−1 are alternating. The set of pattern
avoiding doubly alternating permutations is denoted by

DAn(τ1, . . . , τt) = {σ ∈ Sn(τ1, . . . , τt) : σ is doubly alternating }.

Pattern avoiding permutations have been subject to much attention since the pioneering work by
Knuth’s [10], where he used them for studying stack sortable permutations. For a thorough summary
of the current status of research, see Bóna’s book [4]. Alternating permutations have a long history, they
were studied already in the 19th century by André [1], and it is well know that they are counted by the tan-
gent and secant numbers, also known as Euler numbers, Ek, and thus, their exponential generating function
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Figure 1. The permutation (7, 9, 3, 8, 1, 10, 5, 6, 2, 4) ∈ DA(1234) contains the pattern 3214,
but avoids 1234.

is tan(x)+ sec(x). Alternating permutation avoiding patterns have been studied by Mansour [11], but there
are still many open questions remaining.

The doubly alternating permutations were first counted by Foulkes [6], up to n = 10, using a result
which we state as Theorem 5.1. The only formula known is due to Stanley [13]:

∑

n odd

DAn xn =
∑

k odd

E2
k((log(1 + x)/(1 − x))/2)k/k!,

∑

n even

DAn xn = (1− x2)−1/2
∑

k even

E2
k((log(1 + x)/(1− x))/2)k/k!,

from which we get that the first few numbers for DAn, n > 1, are

1, 1, 1, 2, 3, 8, 19, 64, 880, 3717, 18288, 92935, . . .

The motivation for studying doubly alternating permutations came from work by Guibert and Linusson [8]
who showed that doubly alternating Baxter permutations are counted by the Catalan numbers. It was a
natural step to study other restrictions to see whether interesting results could be found.

Using computer enumerations Guibert came up with several conjectures that indicated there are sur-
prising connections between doubly alternating permutations and ordinary permutations. Some of these are
proved in this paper, see proposition 4.1 and Theorems 5.2 and 6.2, whereas others still remain unproved
and are listed in conjecture 7.1.

In this paper we study doubly alternating permutations avoiding patterns of lengths three and four. The
patterns of length three are covered in Section 3. In Section 4, we show that doubly alternating permutations
avoiding 2413 are counted by Catalan numbers, and are closely related to the doubly alternating Baxter
permutations. Section 5 contains a bijection between DA2n(1234) and Sn(1234) and in Section 6 we use a
result by Babson and West [2] to construct a bijection between DAn(12τ) and DAn(21τ), where τ is any
permutation of {3, 4, . . . , m}, m > 3. In Section 7 other patterns giving the same sequence are investigated
and in the final section some remarks on a few DA permutations avoiding two patterns of length four are
given.

I like to thank Olivier Guibert for introducing me to the problem and for interesting discussions. Thanks
also to Svante Linusson, Bruce Sagan and Mark Dukes for numerous comments and suggestions.

2. Notation and basic facts

First we define the reverse, the complement and the rotation of a permutation σ,

σr = (σ(n + 1− i))n
i=1

σc = (n + 1− σ(i))n
i=1

σ# = (σc)r = (σr)c = (n + 1− σ(n + 1− i))n
i=1

In terms of matrices, the first two correspond to flipping the matrix vertically and horizontally, respec-
tively, whereas the last operation rotates the matrix 180 degrees. However, these bijections do not in general
preserve the doubly alternating property, which means that we lose some symmetry compare with ordinary
permutations, so that more genuinely different patterns need to be examined. However, it is obvious from
the definition that inverting and, if n is even, rotating a permutation does preserve the property of being
doubly alternating.

Lemma 2.1.
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(a) σ ∈ DAn ⇐⇒ σ−1 ∈ DAn

(b) σ ∈ DA2n ⇐⇒ σ# ∈ DA2n

Another simple, but very useful, property that follows from the DA condition is that some areas on the
border of the matrix can never have a dot, see Figure 2.

Lemma 2.2.

(a) Let σ ∈ DA2n, then
(i) σ(1) is odd,
(ii) σ(2) ∈ {3, 5, 7, . . . , 2n− 1, 2n},
(iii) σ(2) = 2n iff σ(1) = 2n− 1,
(iv) σ(2n) is even,
(v) σ(2n− 1) ∈ {1, 2, 4, 6, . . . , 2n− 2},
(vi) σ(2n− 1) = 1 iff σ(2n) = 2.

(b) Let σ ∈ DA2n+1, then
(i) σ(1) is odd and less than 2n + 1,
(ii) σ(2) is odd and greater than 1,
(iii) σ(2n + 1) is even,
(iv) σ(2n) ∈ {4, 6, 8, . . . , 2n, 2n + 1},
(v) σ(2n) = 2n + 1 iff σ(2n + 1) = 2n.

Proof. First for the case a(i), if σ(1) = k > 1, then σ−1(k) = 1, so σ−1(k − 1) > 1, which implies
that k is odd, since σ ∈ DA. For a(ii), assume σ(2) = m < 2n, m > σ(1) > 1. Then σ−1(m − 1) > 2
or σ−1(m + 1) > 2, so m is odd. The equivalence a(iii) is a direct consequence of the definition of doubly
alternating, since σ(2) > σ(1) and σ−1(2n− 1) < σ−1(2n). The other cases are similar. �

Figure 2. Illustration of Lemma 2.2. Shaded areas are forbidden.

Note that this lemma could be applied to σ−1 as well, because of Lemma 2.1. From the two lemmas it is
clear that there is a difference between odd and even sizes, so they require separate treatment in many of the
proofs. This disparity is also reflected in the fact that DAn(τ1, τ2, . . . , τt) is not an increasing function of n for
all patterns. Some counterexamples are, DA4(321) = 2 > 1 = DA5(321), DA6(2431) = 6 > 5 = DA7(2431)
and, if Conjecture 8.1 is true, DA27(1234, 2134) = 2681223 > 2674440 = DA28(1234, 2134).

3. Patterns of length three

For normal permutations, patterns of length three are the first non-trivial cases; they are all counted by
the Catalan numbers. However, for the doubly alternating permutations, it turns out that all the patterns
of length three are (more or less) trivial.

Proposition 3.1.

(i) |DAn(123)| = |DAn(213)| = |DAn(231)| = |DAn(312)| = 1
(ii) |DAn(132)| = Jn even or n = 1K
(iii) |DAn(321)| = 1 + Jn even and n > 4K

Proof. Omitted in the extended abstract. �
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4. 2413-avoiding doubly alternating permutations

The doubly alternating 2413-avoiding permutations were conjectured by Guibert to be counted by the
Catalan numbers. We prove this by showing them to possess a fairly simple block structure. First we need
a technical lemma.

Lemma 4.1. Let σ ∈ DAn(2413), then

(i) n odd =⇒ σ(1) = 1
(ii) n even =⇒ σ(1) = 1 and σ(n) = n or there is a k, 2 < k 6 n− 1, such

that σ(i) > σ(j) for all i < k 6 j.

Proof. We can assume that n > 3, the smaller cases are trivial. Let a = σ(1), and assume σ(1) 6= 1.
By Lemma 2.2, a must be odd. Now let b = σ(β), where β is the smallest number such that σ(β) < a. Note
that β > 3, since σ(2) > a. Also, β is odd since σ(β − 1) > σ(β).

Let c be the largest number such that γ = σ−1(c) < β, see Figure 3. Thus c > a and c must be odd or
c = n, since σ−1(c + 1) > β > σ−1(c) = γ if c < n.

If κ > β, then σ(κ) < a or σ(κ) > c, otherwise we get the 2413 pattern. Therefore the rectangle, with
NW corner (2, a + 1) and SE corner (β − 1, c) contains exactly one dot in each row and column, so it is
square, and hence c = a+β− 2 is even and thus c = n is the only possibility. This proves the first assertion.

If n is even, σ(1) = 1 implies σ(n), by rotational symmetry, so the second assertion follows from
i < β 6 j ⇒ σ(j) < a 6 σ(i). �

β

γ

1
b a c

Figure 3. Illustration of Lemma 4.1, the shaded areas are empty.

As a direct consequence, we get the following corollary, which gives a very explicit description of what
the DA 2413-avoiding permutations look like.

Corollary 4.2.

(i) σ ∈ DA2n+1(2413) iff σ = (1, σ̃), where (σ̃r)−1 ∈ DA2n(2413).
(ii) σ ∈ DA2n(2413) iff the permutation matrix of σ is a block matrix, where all but the anti-diagonal

blocks are empty. Any non-empty block ν has even size, 2k, and can be written ν = (1, ν̃, 2k), where
(ν̃r)−1 ∈ DA2k−2(2413).

Figure 4. Example of the block structure of 2413-avoiding DA permutations.

The block structure condition in the corollary is in fact invariant under taking inverses, even though
the pattern 2413 is not, therefore we get the following, slightly surprising result: DAn(2413) and DAn(3142)
are not only the same size, but are actually the same sets. Therefore also DAn(2413, 3142) is the same set.
They are all counted by the Catalan numbers.
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Proposition 4.1. |DAn(2413)| = Cbn/2c.

Proof. First if n is odd, we have as a direct consequence of Corollary 4.2(i) that |DAn(2413)| =
|DAn−1(2413)|. If n is even, then Corollary 4.2(ii) tells us that σ ∈ DAn(2413) can be factored into blocks
σ1, σ2, . . . , σm, where σi = (1, σ̃i, |σi|) and σ̃r

i ∈ DA(2413).
Let D(x) be the generating function D(x) =

∑

k |DA2k(2413)|xk. Then

D(x) =

∞
∑

i=0

(xD(x))i =
1

1− xD(x)

which implies xD(x)2−D(x)+1 = 0, i.e., the well know equation for the generating function of the Catalan
numbers. Since D(0) = 1, we get |DA2k(2413)| = Ck. �

Another way to prove this is to construct a bijection with Dyck paths. We define Θ : DA2n(2413) ↔
{Dyck paths of length 2n} recursively, by using Corollary 4.2.

(i) Θ(∅) = ∅
(ii) If σ consists of a single block, so that σ = (1, σ̃, 2n), then Θ(σ) is the Dyck path starting with a

rise, ending with a descent and having the Dyck path Θ(σ̃r) as the middle part.
(iii) If σ can be factored into k blocks, σ1, . . . , σk (starting with the leftmost block), then Θ(σ) is the

concatenation of the Dyck paths Θ(σ1), . . . , Θ(σk).

The inverse is similarly defined, using recursion.

Θ
−→

Figure 5. Example of the bijection between DA2n(2413) and Dyck paths.

4.1. Doubly alternating Baxter permutations. A Baxter permutation is defined to be a permuta-
tion, σ = (σi)

n
i=1, such that for all 1 6 i < j < k < l 6 n,

σi + 1 = σl and σj > σl =⇒ σk > σl and

σl + 1 = σi and σk > σi =⇒ σj > σi.

It is clear from this definition that if σ avoids both 2413 and 3142 then it is a Baxter permutation, so we
have

DAn(2413, 3142)⊂ {σ ∈ DAn : σ is Baxter}.

However, in [8], Guibert and Linusson showed that the doubly alternating Baxter permutations are counted
by the Catalan numbers, so the sets must in fact be the same:

Corollary 4.3.

{σ ∈ DAn : σ is Baxter} = DAn(2413, 3142) = DAn(2413) = DAn(3142).

It is also possible to prove this directly, without referring to the result by Guibert and Linusson.

Lemma 4.4. {σ ∈ DAn : σ is Baxter} ⊂ DAn(2413).

Proof. Assume σ is Baxter, but not 2413-avoiding, and d1, d2, d3, d4, with dk = (ik, jk), constitute a
2413 pattern, such that j4 − j1 is as small as possible and given j1 and j4, i3 − i2 is as small as possible , as
in Figure 6. The four areas shaded in the figure are empty, otherwise we would use one of those dots for the
2413-pattern. Now, let ν be the permutation having as permutation matrix the submatrix of σ, consisting
of the rows i2 + 1, i2 + 2, . . . , i3 − 1 and columns j1 + 1, j1 + 2, . . . , j4 − 1. Since σ is Baxter, ν cannot be
empty. The DA condition implies that ν is up-down-alternating, ν−1 is down-up-alternating and |ν| is even.
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Also ν is 2413-avoiding, since otherwise this occurrence of 2413 would have been used instead of d1, . . . , d4,
and ν(1) 6= 1, since ν−1 is down-up-alternating.

Rehashing the argument for Lemma 4.1, we can see that in fact no such permutation ν can exist. Defining
a, b, c, β and γ in the same way as in the proof of Lemma 4.1 we get once again Figure 3. The difference is
that now a and c must be even, whereas β is still odd. But then c = a + β − 2 is odd, a contradiction. �

i1

i2

i3

i4

j3 j1 j4 j2

ν

d1
d2

d3
d4

Figure 6. Illustration of Lemma 4.4. The shaded areas do not contain any dots.

5. 1234-avoiding doubly alternating permutations

In this section we construct a bijection between the doubly alternating 1234-avoiding permutations of size
2n and the ordinary 1234-avoiding permutations of size n by using the Robinson-Schensted correspondence.
Let λ be a Young diagram, and denote by SYT(λ) the set of standard Young tableaux of shape λ. For a
standard Young tableaux, T , let rowk(T ) (colk(T )) denote the number of the row (column) for the entry k,
counting from the top row (leftmost column), which is given the number one. The vector row(T ) (col(T )) is
called the row (column) reading of T .

We define the set of alternating standard tableaux as

Alt(λ) ={T ∈ SYT(λ) : col(T ) is up-down-alternating}

={T ∈ SYT(λ) : row(T ) is down-up-alternating},

where the second equality is a consequence of the relative positions of two consecutive entries in a standard
tableau, as shown in Figure 7.

k

Figure 7. The shaded area denotes the possible positions for the entry k + 1, relative to
the entry k, in a standard Young tableau.

The Robinson-Schensted correspondence, RSK, is a well known bijection between a permutation and a
pair of standard Young tableaux of the same shape, see for example the book by Fulton [7]. An interesting
fact is that doubly alternating permutations can be recognised by their RSK tableaux: They are both
alternating if and only if the permutation is DA. In fact, Foulkes [5] proved a more general theorem, in
which he counts the number of permutations with any given sequences of ups and downs for the permutation
and its inverse. The following lemma is the key for proving Foulkes theorem.

Lemma 5.1. Let σ ∈ Sn, RSK(σ) = (P, Q) and 1 6 k < n, then

k comes before k + 1 in σ ⇐⇒ rowk(P ) > rowk+1(P ).
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Proof. First assume k is inserted before k + 1 in the RSK bumping process. This means that k + 1
can never end up below k, since whenever they are in the same row only k can be bumped down.

For the converse, assume k + 1 is inserted before k. Then k will always be strictly above k + 1, since if
k is in the row exactly above k + 1 and is being bumped down (or k + 1 is in the first row and k is about to
be inserted), k has to bump down k + 1 in the next step and thus stay above. �

Let the signature of a word, w = w1w2 . . . wn, be a sequence of +’s and −’s which has a + in position i
iff wi < wi+1. For example, signature(4, 1, 5, 5, 6, 2, 2) = (−, +,−, +,−,−). We now get Foulkes theorem as
a consequence of Lemma 5.1 and the fact that RSK(σ) = (P, Q) iff RSK(σ−1) = (Q, P ):

theorem 5.1 (Foulkes). Let σ ∈ Sn and RSK(σ) = (P, Q). Then

signature(σ−1) = signature(col(P )) = − signature(row(P )),

signature(σ) = signature(col(Q)) = − signature(row(Q)).

The doubly alternating permutations are a special case:

Corollary 5.2. Let σ ∈ Sn and RSK(σ) = (P, Q). Then

σ ∈ DAn ⇐⇒ P, Q ∈ Alt(λ).

Let T be an alternating standard tableau with 2n entries and at most three columns. We define the pair
column reading colpair(T ) = (wi)

n
i=1, where wi = col2i−1(T ) + col2i(T ) − 2, i.e, (1, 2) 7→ 1, (1, 3) 7→ 2 and

(2, 3) 7→ 3, since Lemma 5.1 tells us that the only possibilities for the pairs are (1, 2), (1, 3) and (2, 3).

Let w = (wi)
l
i=1 be a word, and weight(w)

def
= (|{i : wi = k}|)k>1 be the weight vector of w. We call w

Yamanouchi (or a ballot sequence) if the weight of each prefix of w is a partition, i.e., it is weakly decreasing.

Lemma 5.3. colpair is a bijection between alternating standard tableaux with 2n elements and at most
three columns and Yamanouchi words of length n on three letters.

Proof. Let T be an alternating standard tableaux, with at most three columns. Then colpair(T ) =
(wi)

n
i=1 is, as noted above, a word on the letters 1,2 and 3, so we need to show that colpair(T ) is Yamanouchi

iff col(T ) is an alternating Yamanouchi word.
First assume colpair(T ) is Yamanouchi and let v = (wi)

k
i=1 be an arbitrary prefix of colpair(T ). Then

weight(v) = (a, b, c), is a partition, i.e., a > b > c. Hence weight((colj(T )2k
j=1) = (a + b, a + c, b + c) is also

a partition. Since col(T ) is alternating and weight((coli(T ))2k+1
i=1 ) is a partition if weight((coli(T ))2k+2

i=1 ) is, it
follows that col(T ) is an alternating Yamanouchi word.

For the converse, assume col(T ) is an alternating Yamanouchi word and let u = (coli(T ))2k
i=1 be a prefix

of col(T ). Then weight(u) = (d, e, f) is a partition, so weight((colpairi(T ))k
i=1) = 1

2 (d+e−f, d+f−e, e+f−d)
is a partition, which proves that colpair(T ) is Yamanouchi. �

Now we are ready to combine the bijections to get the bijection Φ : Sn(1234)→ DA2n(1234), defined by

Φ(σ) = RSK−1(colpair−1(col(P )), colpair−1(col(Q)),

where RSK(σ) = (P, Q). See Figure 8 for an illustrative example.

theorem 5.2. Φ is a bijection, hence

|DA2n(1234)| = | Sn(1234)|.

Proof. Let σ ∈ Sn(1234) and RSK(σ) = (P, Q). RSK is a bijection between permutations and pairs
of standard tableaux of the same shape such that if the permutation is 1234-avoiding iff the shape does not
have more than three columns. From the definitions we know that col(P ) and col(Q) are Yamanouchi words,
so, by Lemma 5.3, colpair−1(col(P )) and colpair−1(col(Q)) are alternating standard tableaux with at most
three columns. Their shapes are the same since the weights of col(P ) and col(Q) are the same, which is a
consequence of P and Q having the same shape. Applying the inverse of RSK and using Corollary 5.2, we
get that Φ(σ) ∈ DA2n(1234).

The converse is similar. �
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R
SK
←
→

1 2 3

4 5 7

6

1 2 5

3 4 6

7

←
→ col

←
→ col

1231213 1212331

←
→ colpair

←
→ colpair

1 2 4

3 5 6

7 8 10

9 12 14

11 13

1 2 4

3 6 8

5 9 10

7 11 12

13 14

RSK

←→

Figure 8. Example of the bijection Φ : Sn(1234)→ DA2n(1234).

6. 21τ -avoiding doubly alternating permutations

The goal of this section is to find a bijection between DAn(12τ) and DAn(21τ), where τ is any permu-
tation of {3, 4, . . . , m}, m > 3, by using a well known bijection due to Babson and West [2]. The problem is
that it is far from obvious that it will preserve the property of being doubly alternating. To show this we
need a few definitions. During this section we assume τ to be fixed.

A dot, d, is called active if d is the 1 or 2 in any 12τ or 21τ pattern in σ and other dots are called
inactive. Also the pair of dots, (d1, d2), is called an active pair if d1d2 is the 12 in a 12τ -pattern or the 21
in a 21τ -pattern.

Lemma 6.1. Assume σ ∈ DAn(12τ) ∪DAn(21τ) and d = (i, j) is any active dot. Then i and j are odd.

Proof. First assume σ ∈ DAn(12τ) and that σ has a 21τ -pattern, otherwise there are no active dots.
By inversion symmetry, we can assume that d is the 1 in a 21τ pattern. If j = 1, i.e. σ−1(1) = j, then j is
odd by Lemma 2.2, and if j > 1, then σ−1(j − 1) > σ−1(j), since a dots to the north-west of d would give a
12τ pattern. Hence j is odd. Also, to avoid the 12τ , σ(i− 1) > σ(i), so i is odd as well.

Now assume instead σ ∈ DAn(21τ). Let d1, d2, . . . , dm, be the dots in a 12τ pattern, with dk = (ik, jk).
If i1 is even then there is a descent from i1 to i1 + 1 and so the corresponding points along with tau will
make the forbidden pattern. So i1 is odd and the same argument applies to i2, j1, and j2. �

Figure 9. Illustration of the proof for Lemma 6.1, with τ = (3, 4). Shaded areas are forbidden.

We now define a Young diagram, λσ, consisting of the part of the board which contains the active dots.
For a pair of dots, d1, d2, let Rd1,d2

to be the smallest rectangle with top left coordinates (1, 1), such that
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d1, d2 ∈ Rd1,d2
. Define

λσ
def
=

⋃

Rd1,d2
,

where the union is over all active pairs (d1, d2). It is clear from the definition that λσ is indeed a Young
diagram (see Figure 10).

A rook placement (also known as traversal or transversal) of a Young diagram, λ, is a placement of dots,
such that all rows and columns contain exactly one dot. If some of the rows or columns are empty we call
it a partial rook placement. Furthermore, we say that a rook placement on λ avoids the pattern τ if no
rectangle, R ⊂ λ, contain τ .

The definition of λσ implies the following useful fact:

Lemma 6.2. Let σ ∈ DAn and rp(λσ) be the partial rook placement on λσ induced by σ. Then

σ ∈ DAn(12τ) ⇐⇒ rp(λσ) is 12-avoiding,

σ ∈ DAn(21τ) ⇐⇒ rp(λσ) is 21-avoiding.

Figure 10. Example of λσ for σ = (1, 11, 7, 9, 5, 12, 8, 10, 3, 4, 2, 6) and τ = (3, 4).

The bijection we will use is due to Babson and West [2], which built on work by Simion and Schmidt [12]
and West [14]. But we give here the more general result by Backelin, West, and Xin [3].

theorem 6.1 (Backelin, West, Xin). Let τ be any permutation of {t + 1, t + 2, . . . , m}. Then for every
Young diagram λ, the number of (t, t − 1, . . . , 1, τ)-avoiding rook placements on λ equals the number of
(1, 2, . . . , t, τ)-avoiding rook placements on λ.

We call two permutations of the same size a-equivalent if all the inactive dots are the same, and write
σ1∼aσ2. We shall see in Lemma 6.4 that this implies λσ1

= λσ2
.

Lemma 6.3. If σ ∈ DAn(12τ) ∪DAn(21τ) and ν∼aσ, then ν is doubly alternating.

Proof. Let d = (i, j) ∈ ν be a dot in an odd row, so that, by Lemma 6.1, both the dots in row
i − 1 and row i + 1 are inactive (if they exists). If d is inactive then all three dots also belong to σ so
ν(i−1) > ν(i) < ν(i+1). If d is active there is a τ -pattern to the SE of d, so if either of the dots in row i−1
or row i + 1 are to the left of d, then this dot is active, since it creates either a 12τ or 21τ pattern together
with d and the τ pattern, giving a contradiction, so again ν(i− 1) > ν(i) < ν(i + 1). The same applies, by
symmetry, to dots in odd columns. �

Lemma 6.4. If σ, ν ∈ DAn, then

σ∼aν =⇒ λσ = λν .

Proof. Let σ∼aν be two arbitrary a-equivalent DA permutations and assume s = (i, j) is a SE corner
of λσ. We need to show that s ∈ λν , so that λσ ⊆ λν and thus, since ∼a is reflexive, λν = λσ.

Let Rd1,d2
⊂ λσ be a rectangle, such that s ∈ Rd1,d2

. Such a rectangle must exist, otherwise could not s
belong to λσ . Hence there is a τ -pattern to the SE of s and one of the dk is in row i and one (possibly the
same one) is in column j. But, as ν∼aσ, they have the same inactive dots, so there must also exist a dot
d′1 ∈ λν in row i and a dot d′2 ∈ λν in column j. If d′1 is east of s or if d′2 is south of s then s ∈ λν . Hence
we can assume d′1 and d′2 to be weakly NW of s. If d′1 6= d′2, then s ∈ Rd′

1
,d′

2
⊂ λν , since the τ -pattern is still

SE of s, and if d′1 = d′2 = s then clearly s ∈ λν . �
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Now we are ready to construct a bijection Ψ : DAn(12τ) → DAn(21τ). Let σ ∈ DAn(12τ), so that the
restriction of σ to λσ is a partial 12-avoiding rook placement. By Theorem 6.1 (ignoring the empty rows and
columns) and Lemma 6.4, there exists a unique 21-avoiding (partial) rook placement on λσ, with the same
rows and columns empty, which we combine with the inactive dots of σ to get Ψ(σ). By Lemma 6.3, Ψ(σ) is
DA, and Lemma 6.2 says that it avoids 21τ . It is also clear from Theorem 6.1 that it is indeed a bijection.
We have thus bijectively shown:

theorem 6.2. Let τ be any permutation of {3, 4, . . . , m}, m > 3. Then

|DAn(21τ)| = |DAn(12τ)|.

As a special case we have

Corollary 6.5. |DAn(2134)| = |DAn(1234)|.

7. Other patterns with the same number sequence as Sn(1234)

By examining all the patterns of length four with computer, Guibert found 15 different cases that all
seem to give rise to the same sequence, | Sn(1234)|. Using Theorems 5.2 and 6.2, inversion, rotation and
Proposition 7.1 below, we get altogether ten bijections, see Figure 11. However, to prove that all of them are
indeed the same we would need five more bijections. In fact, we conjecture that the number of permutations
are the same in all the cases given below.

Conjecture 7.1 (Guibert).

|DA2n(1234)| = |DA2n+1(1243)|

= |DA2n(1432)|

= |DA2n+1(1432)|

= |DA2n(2341)|

= |DA2n(3421)|

One can note that many of the patterns in the conjecture are of the same type as treated in Theorem 6.1,
but the proof does not work here, except for 2134, since the bijections destroy the DA property.

Proposition 7.1. |DA2n(2143)| = |DA2n+1(3412)| = |DA2n+2(3412)|.

Proof. Let σ ∈ DAn(3412), with n > 4. If σ(1) > 1, we get the forbidden pattern on the rows 1, 2,
σ−1(1), σ−1(2), so σ(1) = 1. Let σ̃ be the permutation with the first row and column of σ removed. It is
clear that if n is odd then σ̃c ∈ DAn−1(2143) iff σ ∈ DAn(3412), and if n is even then σ̃# ∈ DAn−1(3412)
iff σ ∈ DAn(3412). �

Sn(1234)
Th. 5.2
←→ DA2n(1234)

Th. 6.2
←→ DA2n(2134)

#
←→ DA2n(1243)

Th. 6.2
←→ DA2n(2143)

Pr. 7.1
←→ DA2n+1(3412)

Pr. 7.1
←→ DA2n+2(3412)

DA2n+1(1243)
Th. 6.2
←→ DA2n+1(2143)

DA2n(1432)
#
←→ DA2n(3214)

DA2n(2341)
−1
←→ DA2n(4123)

DA2n(3421)
#
←→ DA2n(4312)

DA2n+1(1432)

Figure 11. Known bijections between the sequences conjectured to be | Sn(1234)|.
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8. Avoiding pairs of patterns of length four

When we have two patterns of length four, there are a huge number of cases. We have not yet studied
many of these, but would like to give a flavour of what can happen by presenting one result and two
conjectures. Combining the results in Sections 4 and 5 we get

Proposition 8.1.

|DAn(1234, 2413)|=











Fn/2, if n is even,

2, if n = 5,

1, otherwise,

where the Fn are the Fibonacci numbers.

Proof. Let σ ∈ DA2n(1234, 2413). By Corollary 4.2, σ can be factored into blocks, σ1, σ2, . . . σk. As σ
avoids 1234 must each block be either 12 or 1324, since each of them have a dot in the NW corner and the
SE corner. Hence

|DA2n(1234, 2413)| = |DA2n−2(1234, 2413)|+ |DA2n−4(1234, 2413)|,

and since |DA0(1234, 2413)|= |DA2(1234, 2413)|= 1, we get the Fibonacci numbers.
If σ ∈ DA2n+1(1234, 2413), then σ(1) = 1. Let σ̃ = (2n + 1− σ(i))2n+1

i=2 be the permutation constructed
from σ by removing the first row and column and then flipping horizontally. Then σ̃ ∈ DA2n(321, 2413),
which by Proposition 3.1(iii) gives two possibilities if 2n > 4, namely (1, 3, 2, 5, 4, . . . , 2n− 1, 2n− 2, 2n) and
(3, 5, 1, 7, 2, 9, 4, . . . , n, n − 4, n − 2). However, only the former avoids 2413 if n > 6, so we get the desired
result. �

The following two conjectures have been verified by computer calculations up to n = 23.

Conjecture 8.1.

|DAn(1234, 3214)|=











Fn−1, if n is even,

1, if n = 1 or n = 3,

Fn−1 − Fn−7, otherwise.

Conjecture 8.2.

|DAn(1234, 2134)| =











Cn/2, if n is even,

1, if n = 1 or n = 3,

C
(4)
(n−5)/2, otherwise.

Here C
(4)
n is the fourth difference of the Catalan numbers, defined recursively by C

(0)
n = Cn and C

(i+1)
n =

C
(i)
n+1 − C

(i)
n . By collecting the terms and simplifying we get

C(4)
n = Cn+4 − 4Cn+3 + 6Cn+2 − 4Cn+1 + Cn

= 9Cn
9n4 + 54n3 + 135n2 + 122n + 40

(n + 2)(n + 3)(n + 4)(n + 5)
.
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