Flag Vectors of Polytopes An Overview

Margaret M. Bayer

University of Kansas

FPSAC'06

Definitions

CONVEX POLYTOPE:

$$P = \operatorname{conv}\{x_1, x_2, \dots, x_n\} \subset \mathbf{R}^d$$

proper FACE:

intersection of supporting hyperplane with P

FACE LATTICE:

 \emptyset , P, and proper faces, ordered by inclusion

FACE VECTOR:

$$(f_0(P), f_1(P), \ldots, f_{d-1}(P))$$

 $f_i(P) = \#$ of *i*-dimensional faces of *P*

The main problem

BIG PROBLEM:

Characterize the face vectors of d-dimensional convex polytopes.

The main problem

BIG PROBLEM:

Characterize the face vectors of d-dimensional convex polytopes.

THEOREM (STEINITZ)

 $(f_0,f_1,f_2)\in \mathbf{N}^3$ is the face vector of a 3-dimensional convex polytope if and only if

- 1. $f_0 f_1 + f_2 = 2$ and
- 2. $2f_1 \ge 3f_0$ and $2f_1 \ge 3f_2$.

The main problem

BIG PROBLEM:

Characterize the face vectors of d-dimensional convex polytopes.

THEOREM (STEINITZ) * HAPPY 100TH ANNIVERSARY *

 $(f_0,f_1,f_2)\in \mathbf{N}^3$ is the face vector of a 3-dimensional convex polytope if and only if

- 1. $f_0 f_1 + f_2 = 2$ and
- 2. $2f_1 \ge 3f_0$ and $2f_1 \ge 3f_2$.

The g-theorem

THEOREM (Conjectured by McMullen; proved by Stanley, and Billera and Lee 1980)

Characterization of all face vectors of simplicial polytopes

- linear equations (Dehn-Sommerville)
- linear inequalities
- nonlinear inequalities

The *g*-theorem

THEOREM (Conjectured by McMullen; proved by Stanley, and Billera and Lee 1980)

Characterization of all face vectors of simplicial polytopes

- linear equations (Dehn-Sommerville)
- linear inequalities
- nonlinear inequalities

NONSIMPLICIAL, dim > 4?

still open need to look further than the face vector . . .



Flag vectors

Let
$$S = \{s_1, s_2, \dots, s_k\}_{<} \subseteq \{0, 1, \dots, d-1\}.$$

Definition

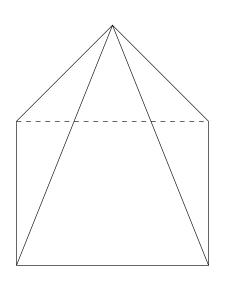
An S-flag of P is a chain

$$\emptyset \subset F_1 \subset F_2 \subset \cdots \subset F_k \subset P$$

with dim $F_i = s_i$.

$$f_S(P) = \#$$
 of S-flags of P
 $(f_S(P))_{S\subseteq\{0,1,\dots,d-1\}}$ is the flag vector of P.

Example



$$f_{\emptyset} = 1$$

 $f_0 = 5$
 $f_1 = 8$
 $f_2 = 5$
 $f_{01} = 16$
 $f_{02} = 16$
 $f_{12} = 16$
 $f_{012} = 32$

Why Study Flag Vectors of Polytopes?

- Stanley (1970s) studied (f_S) for balanced simplicial complexes/order complexes of graded posets.
- For 3-dimensional polytopes and simplicial polytopes, for which the face vectors are characterized, the flag vector depends (linearly) on the face vector.
- For general polytopes, the flag vector reflects greater combinatorial complexity than the face vector.
- Inequalities on flag vectors project to inequalities on face vectors.
- Flag vectors relate to parameters from algebraic geometry.

Generalized Dehn-Sommerville Equations

THEOREM (B-Billera 1983)

The dimension of the linear span of flag vectors of d-polytopes is the dth Fibonacci number.

Generalized Dehn-Sommerville Equations

THEOREM (B-Billera 1983)

The dimension of the linear span of flag vectors of d-polytopes is the dth Fibonacci number.

- Finding the equations is straightforward.
- Finding spanning polytopes is more complicated.
- Kalai 1988 gives an elegant basis of polytopes.

Generalized Dehn-Sommerville Equations

THEOREM (B-Billera 1983)

The dimension of the linear span of flag vectors of d-polytopes is the dth Fibonacci number.

- Finding the equations is straightforward.
- Finding spanning polytopes is more complicated.
- Kalai 1988 gives an elegant basis of polytopes.

Independent flag numbers

- dimension 3: f_{\emptyset} , f_0 , f_1
- dimension 4: f_{\emptyset} , f_0 , f_1 , f_2 , f_{02}
- dimension 5: f_{\emptyset} , f_0 , f_1 , f_2 , f_3 , f_{02} , f_{03} , f_{13}

Kalai rigidity inequality (1987)

$$f_{02}-3f_2+f_1-df_0+\binom{d+1}{2}\geq 0$$

Kalai rigidity inequality (1987)

$$f_{02} - 3f_2 + f_1 - df_0 + {d+1 \choose 2} \ge 0$$

4-dimensional polytopes (B 1987)

$$f_0 \ge 5$$

 $f_3 \ge 5$
 $f_{02} - 3f_2 \ge 0$
 $f_{02} - 3f_1 \ge 0$
 $f_{02} - 3f_2 + f_1 - 4f_0 + 10 \ge 0$
 $6f_1 - 6f_0 - f_{02} > 0$

Kalai rigidity inequality (1987)

$$f_{02} - 3f_2 + f_1 - df_0 + {d+1 \choose 2} \ge 0$$

4-dimensional polytopes (B 1987)

$$f_0 \ge 5$$

 $f_3 \ge 5$
 $f_{02} - 3f_2 \ge 0$
 $f_{02} - 3f_1 \ge 0$
 $f_{02} - 3f_2 + f_1 - 4f_0 + 10 \ge 0$
 $6f_1 - 6f_0 - f_{02} > 0$

Compare: face vectors of 4-polytopes by Barnette, Grünbaum, Reay, 1967–1974.

Kalai rigidity inequality (1987)

$$f_{02} - 3f_2 + f_1 - df_0 + {d+1 \choose 2} \ge 0$$

4-dimensional polytopes (B 1987)

$$f_0 \ge 5$$

 $f_3 \ge 5$
 $f_{02} - 3f_2 \ge 0$
 $f_{02} - 3f_1 \ge 0$
 $f_{02} - 3f_2 + f_1 - 4f_0 + 10 \ge 0$
 $6f_1 - 6f_0 - f_{02} \ge 0$

Compare: face vectors of 4-polytopes by Barnette, Grünbaum, Reay, 1967–1974.

Not known to be best possible.

No further linear inequalities for d = 4 since 1987.

 (h_0,h_1,h_2,\ldots,h_d)

middle perversity intersection homology Betti numbers $(h_0, h_1, h_2, \dots, h_d)$ depends linearly on flag vector

$$(h_0,h_1,h_2,\ldots,h_d)$$

middle perversity intersection homology Betti numbers $(h_0, h_1, h_2, \dots, h_d)$ depends linearly on flag vector

$$1 = h_0 \le h_1 \le h_2 \le \cdots \le h_{\lfloor d/2 \rfloor}$$

from algebraic geometry (for rational polytopes) imply linear inequalities on flag vectors Kalai rigidity inequality is $h_1 \le h_2$

$$(h_0,h_1,h_2,\ldots,h_d)$$

middle perversity intersection homology Betti numbers $(h_0, h_1, h_2, \dots, h_d)$ depends linearly on flag vector

$$1 = h_0 \le h_1 \le h_2 \le \cdots \le h_{\lfloor d/2 \rfloor}$$

from algebraic geometry (for rational polytopes) imply linear inequalities on flag vectors Kalai rigidity inequality is $h_1 \le h_2$

Nonlinear inequalities?

Nonlinear inequalities, satisfied by h-vectors of simplicial polytopes, not known to hold for general polytopes.

$$(h_0, h_1, h_2, \ldots, h_d)$$

middle perversity intersection homology Betti numbers $(h_0, h_1, h_2, \dots, h_d)$ depends linearly on flag vector

$$1 = h_0 \le h_1 \le h_2 \le \cdots \le h_{\lfloor d/2 \rfloor}$$

from algebraic geometry (for rational polytopes) imply linear inequalities on flag vectors Kalai rigidity inequality is $h_1 \le h_2$

Nonlinear inequalities?

Nonlinear inequalities, satisfied by h-vectors of simplicial polytopes, not known to hold for general polytopes.

Karu 2004 broke dependence on algebraic geometry, extending results to nonrational polytopes.

cd-index

cd-index: Jonathan Fine 1986 [B and Klapper 1991]

vector of length = dth Fibonacci number

linearly equivalent to flag vector

cd-index

cd-index: Jonathan Fine 1986 [B and Klapper 1991]

vector of length = dth Fibonacci number

linearly equivalent to flag vector

Examples

4-simplex: cccc + 3dcc + 5cdc + 3ccd + 4dd4-cube: cccc + 14dcc + 16cdc + 6ccd + 20dd

cd-index

cd-index: Jonathan Fine 1986 [B and Klapper 1991]

vector of length = dth Fibonacci number linearly equivalent to flag vector

Examples

4-simplex: cccc + 3dcc + 5cdc + 3ccd + 4dd4-cube: cccc + 14dcc + 16cdc + 6ccd + 20dd

Fine conjecture

Each coefficient in the *cd*-index of a polytope is ≥ 0 .

Proved by Stanley 1994 (for S-shellable spheres)

Strengthened by Billera and Ehrenborg 2000: The d-simplex minimizes each coefficient among d-polytopes.

Basic linear inequalities come from

• toric *h*-vector

cd-index

Basic linear inequalities come from

toric h-vector

cd-index

These are used to generate more inequalities

- by convolution (Kalai 1988)
- by lifting technique of Ehrenborg 2005 using coproduct structure discovered by Ehrenborg and Readdy 2000

Basic linear inequalities come from

toric h-vector

cd-index

These are used to generate more inequalities

- by convolution (Kalai 1988)
- by lifting technique of Ehrenborg 2005 using coproduct structure discovered by Ehrenborg and Readdy 2000

How to analyze the resulting set of inequalities?

- Which are redundant?
- Which give facets of the closed convex cone of flag vectors?

Basic linear inequalities come from

toric h-vector

cd-index

These are used to generate more inequalities

- by convolution (Kalai 1988)
- by lifting technique of Ehrenborg 2005 using coproduct structure discovered by Ehrenborg and Readdy 2000

How to analyze the resulting set of inequalities?

- Which are redundant?
- Which give facets of the closed convex cone of flag vectors?

Some answers by ...

• Ehrenborg 2005

Stenson 2004, 2005

Kalai's convolution

Definition

$$S \subseteq \{0,1,\ldots,d-1\}$$
 $T \subseteq \{0,1,\ldots,e-1\}$

$$f_{S} * f_{T}(P) = \sum_{\dim F = d} f_{S}(F) f_{T}(P/F)$$
$$= f_{S \cup \{d\} \cup (T + (d+1))}(P)$$

flag number of (d+e+1)-dimensional polytope

Kalai's convolution

Definition

$$S \subseteq \{0, 1, \dots, d-1\}$$
 $T \subseteq \{0, 1, \dots, e-1\}$

$$f_S * f_T(P) = \sum_{\dim F = d} f_S(F) f_T(P/F)$$
$$= f_{S \cup \{d\} \cup (T + (d+1))}(P)$$

flag number of (d+e+1)-dimensional polytope

Convolutions produce inequalities

If m_d is a nonnegative linear form in f_S , $S\subseteq\{0,1,\ldots,d-1\}$, and n_e is a nonnegative linear form in f_T , $T\subseteq\{0,1,\ldots,e-1\}$, then $m_d*n_e\geq 0$ for (d+e+1)-polytopes.

Ehrenborg's lifting

Example

For a cd-word w, and a convex polytope P, write [w] for the coefficient of w in the cd-index of P.

Kalai's rigidity inequality for 4-polytopes

$$f_{02}(P) - 3f_2(P) + f_1(P) - 4f_0(P) + 10 \ge 0$$

can be written in terms of the cd-index, as

$$[dd] - [ccd] - [dcc] + 2[cccc] \ge 0.$$

Ehrenborg lifting then gives:

For every cd-words u and v where u does not end in c and deg $u + \deg v = n$, for every (n + 4)-dimensional polytope

$$[uddv] - [uccdv] - [udccv] + 2[uccccv] \ge 0.$$

Flag vectors of 4-dimensional polytopes

toric *h*-vector and *cd*-index don't give new linear inequalities for 4-polytopes

Flag vectors of 4-dimensional polytopes

toric *h*-vector and *cd*-index don't give new linear inequalities for 4-polytopes

Ziegler

focus on fatness/complexity gives better understanding, suggests directions and constructions

Fatness

$$F(P) = \frac{f_1 + f_2 - 20}{f_0 + f_3 - 10}$$

$$5/2 \leq F(P)$$

Is there an upper bound for F(P)?

Largest known F(P) < 9

New results on 4-polytopes!

Paffenholz and Werner 2006

construction of infinite family of 4-polytopes that are 2-simplicial, 2-simple, and elementary gives extreme ray of cone of flag vectors

Definitions

A polytope is 2-simplicial if every 2-face is a triangle.

A polytope is 2-simple if every edge is contained in exactly 3 facets.

A polytope P is elementary if $f_{02}(P) - 3f_2(P) + f_1(P) - 4f_0(P) + 10 = 0$

New results on 4-polytopes!

Paffenholz and Werner 2006

construction of infinite family of 4-polytopes that are 2-simplicial, 2-simple, and elementary gives extreme ray of cone of flag vectors

Definitions

A polytope is 2-simplicial if every 2-face is a triangle.

A polytope is 2-simple if every edge is contained in exactly 3 facets.

A polytope *P* is elementary if $f_{02}(P) - 3f_2(P) + f_1(P) - 4f_0(P) + 10 = 0$

Other examples of 2-simplicial, 2-simple polytopes (Eppstein, Kuperberg, Paffenholz, Ziegler)

Recall inequalities on 4-dimensional polytopes

```
\begin{array}{l} f_0 \geq 5 \\ f_3 \geq 5 \\ f_{02} - 3f_2 \geq 0 \\ f_{02} - 3f_1 \geq 0 \\ f_{02} - 3f_2 + f_1 - 4f_0 + 10 \geq 0 \end{array} \begin{tabular}{l} \mbox{equality for 2-simple)} \\ \mbox{equality for 2-simple)} \\ \mbox{for elementary)} \\ \mbox{6}f_1 - 6f_0 - f_{02} \geq 0 \\ \end{tabular}
```

More new results on 4-polytopes

Ling 2006

new nonlinear inequalities for flag vectors

$$(k-1)f_{02} - {k+1 \choose 2}f_2 + f_1 \le {f_0 \choose 2}$$

$$2(k-1)f_{02}-k(k+1)f_2+(k^2-3k+4)f_1-k(k-3)f_0\leq 4\binom{f_0}{2}$$

Difficulty

We do not know how to generate random combinatorial types of polytopes.

Note that the convex hull of a random set of points in \mathbf{R}^d is a simplicial polytope.

This makes it difficult to test conjectures, and even to come up with conjectures.

Further work—specialization

Special classes of polytopes

- cubical (Adin, Babson, G. Blind, R. Blind, Chan, Hetyei, Jockusch, Joswig, Liu, Ziegler)
- k-simplicial, h-simple (Kalai, Paffenholz, Stenson, Werner, Ziegler)
- polytopes with symmetry (A'Campo-Neuen, Adin, Björner, Jorge, Novik, Stanley)
- zonotopes and geometric lattices (B, Billera, Ehrenborg, Kung, Nyman, Readdy, Stenson, Sturmfels, Swartz)
- 0/1 polytopes (Aichholzer, Bárány, Gatzouras, Giannopoulos, Kaibel, Markoulakis, Pór, Ziegler)
- cyclic-like polytopes (B, Bisztriczky, Dinh, Smilansky)

Cyclic-like polytopes

Generalizations of the simplex

multiplex braxtope

Gale polytopes

facets satisfy "Gale's evenness condition"

Generalizations of cyclic polytopes

simplicial and Galecyclic polytope

multiplicial and Galeordinary polytope

braxial and Gale periodically cyclic Gale polytope

Further work—generalization

More general classes of partially ordered sets

- general graded posets (Billera, Hetyei, Liu)
- Eulerian posets (B, Billera, Chen, Ehrenborg, Hetyei, Jojić, Lau, Readdy, Reading, Stanley)
- Eulerian manifolds (Björner, Charney, Chen, Davis, Hersh, Kalai, Novik, Sparla, Yan)
- Gorenstein* lattices (Billera, Ehrenborg, Karu, Masuda, Murai, Readdy, Reading, Stanley)

Further work—generalization

More general classes of partially ordered sets

- general graded posets (Billera, Hetyei, Liu)
- Eulerian posets (B, Billera, Chen, Ehrenborg, Hetyei, Jojić, Lau, Readdy, Reading, Stanley)
- Eulerian manifolds (Björner, Charney, Chen, Davis, Hersh, Kalai, Novik, Sparla, Yan)
- Gorenstein* lattices (Billera, Ehrenborg, Karu, Masuda, Murai, Readdy, Reading, Stanley)

Connections with other mathematical structures

- toric varieties (Bressler, Bukhshtaber, Karu, Leung, Lunts, Panov, Reiner, Stanley)
- coalgebras (Ehrenborg and Readdy)
- Hopf algebra of quasisymmetric functions (Aguiar, N. Bergeron, Billera, Hsiao, Sottile, van Willigenburg)

The end

THANK YOU!

http://www.math.ku.edu/~bayer