Kreweras Walks and Loopless Triangulations

Olivier Bernardi - LaBRI, Bordeaux

FPSAC 2006, San Diego
Kreweras walks

Walks made of *West*, *South* and *North – East* steps, starting and ending at the origin and confined in the first quadrant.
Preliminary remarks

Kreweras walks are words w on \{a, b, c\} such that

- $|w|_a = |w|_b = |w|_c$,
- for any prefix w', $|w'|_a \leq |w'|_c$ and $|w'|_b \leq |w'|_c$.

$$w = caccbbcbcbbaaaa$$
Preliminary remarks

Kreweras walks are words w on $\{a, b, c\}$ such that

- $|w|_a = |w|_b = |w|_c$,
- for any suffix w', $|w'|_a \geq |w'|_c$ and $|w'|_b \geq |w'|_c$.

$w = caccbbcbcbbaaaa$
Kreweras walks

Theorem (Kreweras 65): The number of Kreweras walks of size n (3n steps) is

$$k_n = \frac{4^n}{(n + 1)(2n + 1)} \binom{3n}{n}.$$
Kreweras walks

Theorem (Kreweras 65): The number of Kreweras walks of size n ($3n$ steps) is

$$k_n = \frac{4^n}{(n+1)(2n+1)} \binom{3n}{n}.$$

[Kreweras 65, Niederhausen 82, 83, Gessel 86, Bousquet-Mélou 05]
Kreweras walks and cubic maps

- Cubic maps and depth-trees.

- Bijection:
 \[\text{Kreweras walk } \iff \text{Cubic map } + \text{ Depth-tree.} \]

- Counting Kreweras walks and cubic maps.

- Open problems.
Cubic maps and depth-trees
Maps

A map is a connected planar graph properly embedded in the sphere. The map is considered up to deformation.

\[
\begin{array}{c}
\includegraphics[width=0.3\textwidth]{map1}
\quad = \quad \includegraphics[width=0.3\textwidth]{map2}
\end{array}
\neq
\begin{array}{c}
\includegraphics[width=0.3\textwidth]{map3}
\end{array}
\]
Maps

A **map** is a connected planar graph properly embedded in the sphere. The map is considered up to deformation.

A map is **rooted** if a half-edge is distinguished as the root.
Cubic maps

A map is cubic if every vertex has degree 3.
Cubic maps

A map is **cubic** if every vertex has degree 3.

We focus on cubic maps *without isthmus*.
Cubic maps and triangulations

Cubic maps without isthmus are the dual of loopless triangulations.
Cubic maps and triangulations

Cubic maps without isthmus are the *dual* of loopless triangulations.
Cubic maps and triangulations

Cubic maps without isthmus are the *dual* of loopless triangulations.
Cubic maps and triangulations

Cubic maps without isthmus are the *dual* of loopless triangulations.
Cubic maps - counting result

Remark: The number of edges of a cubic map is always a multiple of 3.

A cubic map of size n has $3n$ edges, $2n$ vertices and $n + 2$ faces.
Cubic maps - counting result

Remark: The number of edges of a cubic map is always a multiple of 3.

A cubic map of size n has $3n$ edges, $2n$ vertices and $n + 2$ faces.

Theorem [Mullin 65, Poulalhon & Schaeffer 03]:
The number of cubic maps without isthmus of size n is

$$c_n = \frac{2^n}{(n + 1)(2n + 1)} \binom{3n}{n} = \frac{k_n}{2^n}.$$
Depth-trees

We consider *spanning trees* of rooted maps.
Depth-trees

A spanning tree of a rooted map is a depth-tree if every external edge links a vertex to one of its ancestors.
Counting depth-trees

Theorem: For any cubic map of size n ($3n$ edges), there are 2^n depth-trees not containing the root.
Counting depth-trees

Theorem: For any cubic map of size n ($3n$ edges), there are 2^n depth-trees not containing the root.

Example: $n=3$
Counting depth-trees

(Idea of the) proof:

- The depth-trees are the trees that can be obtained by a *depth-first search algorithm* (DFS).

- During a DFS, there are n *real* binary choices. (One for each external edge.)
Kreweras walk

Cubic map + Depth-tree
Kreweras walk

\[k_n = c_n \times 2^n \]

Cubic map + Depth-tree
Bijection

Example:

\[w = cacccbbcbcbbaaaa \]
Bijection

Example:

\[w = caccbbcbcbbaaa.a \]
Bijection

Example:

\[w = caccbbcbbcbbaaaa \]
Bijection

Example:

\[w = caccbbcbcbbaaaa \]
Bijection

Example:

\[w = caccbbcbcbbaaaa \]
Bijection

Example:

\[w = \text{caccbbcbcbbaaaa} \]
Bijection

Example:

\[w = cacccbbcbcbbaaaa \]
Bijection

Example:

\[w = caccbbcbcbbaaaa \]
Bijection

Example:

\[w = caccbbcbcbbaaaaa \]
Bijection

Example:

\[w = caccbbcbcbaaaaa \]
Bijection

Example:

\[w = cacccbcbcbbaaaa \]
Bijection

Example:

\[w = caccbbcbbcbbaaaa \]
Bijection

Example:

\[w = caccbbcbcbbaaaa \]
Bijection

Example:

\[w = caccbbcbcbbaaaa \]
Bijection

Example:

\[w = caccbbcbbbaaaa \]
Theorem: This construction is a bijection between Kreweras walks of size n and cubic maps of size $n + \text{depth-tree}$.

Corollary: $k_n = c_n \times 2^n$.
Proof: The reverse bijection

\[w = caccbbcbcbbaaaa \]
Proof: The reverse bijection

\[w = caccbbcbcbbaaa \]
Proof: The reverse bijection

\[w = caccbbcbcbbaaa \]
Proof: The reverse bijection

\[w = caaccbcbbcbbaaa \]
Proof: The reverse bijection

\[w = cacbbcbbbaaaa \]
Proof: The reverse bijection

\[w = caccbcbbcaaaaa \]
Proof: The reverse bijection

\[w = cacccbcbbbaaaa \]
Proof: The reverse bijection

\[w = caccbbcbbbaaa \]
Proof: The reverse bijection

\[w = caccbbbbbcbbaaaa \]
Proof: The reverse bijection

\[w = cacccbcbcbbaaaa \]
Proof: The reverse bijection

\[w = caccbbcbcbbaaa \]
Proof: The reverse bijection

\[w = caccccbcbcbbaaa \]
Proof: The reverse bijection

\[w = caccbbcbcbbaaaa \]
Counting Kreweras walks and cubic maps
Relaxing some constraints

Kreweras walks are the words w on $\{a, b, c\}$ such that

1. $|w|_a = |w|_b = |w|_c$,
2. for any prefix w', $|w'|_a \leq |w'|_c$ and $|w'|_b \leq |w'|_c$.
Relaxing some constraints

Kreweras walks are the words w on $\{a, b, c\}$ such that
- $|w|_a = |w|_b = |w|_c$,
- for any prefix w', $|w'|_a \leq |w'|_c$ and $|w'|_b \leq |w'|_c$.

What about words w on $\{a, b, c\}$ such that
- $|w|_a + |w|_b = 2|w|_c$,
- for any prefix w', $|w'|_a + |w'|_b \leq 2|w'|_c$?

We call them excursions.
Kreweras

\[w = caccaacbcbbbaaaa \]

\[|w'|_a \leq |w'|_c \text{ and } |w'|_b \leq |w'|_c \]

Excursion

\[w = caccbbcbcbbaaaa \]

\[|w'|_a + |w'|_b \leq 2|w'|_c \]
Proposition: There are \(e_n = \frac{4^n}{2n + 1} \binom{3n}{n} \) excursions of size \(n \).
Proposition: There are $e_n = \frac{4^n}{2n + 1} \binom{3n}{n}$ excursions of size n.
Proof: The excursions w are such that:

$$|w|_a + |w|_b = 2|w|_c,$$

for all prefix w', $|w'|_a + |w'|_b \leq 2|w'|_c$.

- Position of the c’s: $\frac{1}{2n+1} \binom{3n}{n}$.

Cycle lemma: There are $\frac{1}{2n+1} \binom{3n}{n}$ (one-dimensional) walks with $3n$ steps +2 and -1.

- Position of the a’s and b’s: 2^{2n}.
Extending the bijection

Example:

\[w = caccaacbebbaaaa \]
Extending the bijection

Example:

\[w = caccaacbcbbaaa \]
Extending the bijection

Example:

\[w = caccaacbcbbaaaa \]
Extending the bijection

Example:

\[w = caccaacbebbaaaa \]
Extending the bijection

Example:

\[w = caccaacbcbbaaaa \]
Extending the bijection

Example:

\[w = caccaacbcbbaaa \]
Extending the bijection

Example:

\[w = caccaacbcbbaaaa \]
Extending the bijection

Example:

\[w = caccacacbbaaaa \]
Extending the bijection

Example:

\[w = caaccaacbcbbaaaa \]
Extending the bijection

Example:

\[w = caccacbcbbbaaaa \]
Extending the bijection

Example:

\[w = caccaacbcbbaaaa \]
Extending the bijection

Example:

\[w = caccaacbcbbaaaa \]
Theorem: This construction is a bijection between ecursions of size n and cubic maps of size $n +$ depth-tree $+$ marked external edge.

Corollary: $e_n = c_n \times 2^n \times (n + 1)$.
Theorem: This construction is a bijection between ecursions of size n and cubic maps of size n + depth-tree + marked external edge.

Corollary: $e_n = c_n \times 2^n \times (n + 1)$.

Thus,

$$c_n = \frac{2^n}{(n + 1)(2n + 1)} \binom{3n}{n} \quad \text{and} \quad k_n = \frac{4^n}{(n + 1)(2n + 1)} \binom{3n}{n}.$$
Concluding remarks
Results

- We established a bijection between Kreweras walks and cubic maps with a depth-tree.

 \[\Rightarrow \text{Coding of triangulations with } \log_2(27) \text{ bits per vertex.} \]
 \[\text{(Optimal coding: } \log_2(27) - 1 \text{ bits per vertex.)} \]
Results

- We established a bijection between Kreweras walks and cubic maps with a depth-tree.

 ⇒ Coding of triangulations with $\log_2(27)$ bits per vertex. (Optimal coding: $\log_2(27) - 1$ bits per vertex.)

- We extended the bijection to a more general class of walks.

 ⇒ Counting results.

 ⇒ Random sampling of triangulations in linear time.

\[k_n = \frac{4^n}{(n + 1)(2n + 1)} \binom{3n}{n}. \]
Open problems

Can we count Kreweras walks ending at \((i, 0)\) ? at \((i, j)\) ?
Open problems

Can we count Kreweras walks ending at \((i, 0)\) ? at \((i, j)\) ?

Theorem [Kreweras 65] : There are

\[
k_{n,i} = 4^n \binom{2i}{i} \frac{2i + 1}{(n + i + 1)(2n + 2i + 1)} \binom{3n + 2i}{n}
\]

Kreweras walks ending at \((i, 0)\).
Open problems

Can we count Kreweras walks ending at $(i, 0)$? at (i, j)?

Theorem [Kreweras 65]: There are

$$k_{n,i} = 4^n \binom{2i}{i} \frac{2i + 1}{(n + i + 1)(2n + 2i + 1)} \binom{3n + 2i}{n}$$

Kreweras walks ending at $(i, 0)$.

Remark: Kreweras walks ending at $(i, 0)$ and $(i + 2)$-near-cubic maps are related:

$$k_{n,i} = 2^n \times c_{n,i}.$$
Open problems

There are similar counting results:

- Non-separable maps [Tutte].
- Two-stack sortable permutations [West, Zeilberger].

\[\mathcal{NS}_n = \frac{2}{(n+1)(2n+1)} \binom{3n}{n}.\]

[Dulucq, Gire & Guibert 96, Goulden & West 96]
Thanks.