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OVERVIEW

Aims: (i) to describe basic ideas underlying

Hopf algebroids, (ii) to make the case for

combinatorial models, and (iii) to provide

simple examples, including origins in algebraic

topology.
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2. HOPF ALGEBRAS

3. HOPF ALGEBROIDS

4. COMBINATORIAL MODELS
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The scheme of things ...

TOPOLOGY
and

GEOMETRY
−→ COMBINATORICS

y y
ALGEBRA −→ ALGEBRAIC

COMBINATORICSy
ALGEBRAIC
GEOMETRY
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1. GRAPHS TO COGROUPOIDS

A digraph (V, E) has a set of vertices V and

a set of edges E, and source and target

functions s, t : E → V . We assume that each

vertex is endowed with a loop, given by a

unit i : V → E. So

s · i = t · i = 1V .

We also have graphs of groups, graphs of

topological spaces, graphs of algebras . . . .

By turning the arrows around, we obtain a

cograph (V ′, E′). This has cosource and

cotarget functions s′, t′ : V ′ → E′, and a

counit i′ : E′ → V ′. They obey

i′ · s′ = i′ · t′ = 1V ′.
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A group ({∗}, F ) is a digraph with a single

vertex ∗, whose edges F may be composed

using a function µ : F × F → F . This is

associative, with unit i(∗); so we write

i(∗) = 1.

There is also an inverse χ : F → F , for which

µ(h, χh) = µ(χh, h) = 1.

We express these conditions as commutative

diagrams of sets and functions. For example

F
δ−→ F × F

∗
y y1×χ

F ←−
µ

F × F

.

A group of topological spaces is nothing more

than a topological group!

5



A groupoid (V, G) is a digraph with vertices
V , and a function µ : G×V G→ G which allows
the edges G to be partially composed. Here

G×V G = {(g, h) : t(g) = s(h)} ⊆ G×G.

This is associative whenever possible, with
units {i(v) = 1v : v ∈ V }.

There is also an inverse χ : G→ G, such that

s(χg) = t(g) and t(χg) = s(g),

with χ2 = 1 and

µ(χg, g) = 1t(g) and µ(g, χg) = 1s(g).

So there is a commutative diagram

G
(1,χ)−−−−→ G×V G

s

y yµ

V −−−−→
u

G

,

for example.

6



A classic example is the pair groupoid

(W, W ×W )

for any set (or C∞-manifold, or algebra ..) W .

The functions s = π1 and t = π2 are the

projections, and i = ∆ is the diagonal. Since

(W ×W )×W (W ×W ) ∼= W ×W ×W

we may define µ by

µ(x, y, z) = (x, z).

Then χ(x, y) = (y, x).

Another famous groupoid is (X,Π1(X)), the

fundamental groupoid of the topological

space X. The elements p ∈ Π1(X) with

s(p) = x and t(p) = y

are homotopy classes of paths from x to y.
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A classic example of a cogroupoid is given by

(Y, Y t Y )

for any set (or space, or algebra . . . ) Y .

The functions s′ = ι1 and t′ = ι2 are the

inclusions, and i′ = φ is the fold. Since

(Y t Y ) tY (Y t Y ) ∼= Y t Y t Y,

we may define cocomposition µ′ = δ as

Y t Y ∼= Y t∅ t Y −→ Y t Y t Y.

Then χ′ interchanges the summands of Y t Y .

For any commutative ring R there is an

isomorphism of function algebras

RY tY ∼= RY ×RY ,

and the cogroupoid maps induce the pair

groupoid (RY , RY ×RY ) of rings.
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There is a multiplication cogroupoid

(M, M ×M),

for any abelian group or monoid M !

The cosource and cotarget maps are

s′(a) = (a,1) and t′(a) = (1, a),

and the counit i′ is the multiplication m.

Cocomposition takes values in

(M ×M)× (M ×M)/ ∼ ,

where

(a, b), (c, d) ∼ (a, bc), (1, d) ∼ (a,1), (bc, d);

it is given by

δ : M ×M −→M ×M ×M,

with δ(a, b) = (a,1, b). Also, χ′(a, b) = (b, a).

A cogroupoid with V ′ = {∗} is a cogroup; in

this case, s′ and t′ coincide.
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2. HOPF ALGEBRAS

A Hopf algebra over a commutative ring R is

a cogroup (R, H) of R-algebras. In this

context V ′ is the trivial R-algebra R, and the

diagonal is an R-algebra homomorphism

δ : H −→ H ⊗R H.

The counit i′ : H → R is an augmentation,

and χ′ is the antipode.

The condition that δ be a morphism of

R-algebras is also the condition that

multiplication in H be a morphism of

R-coalgebras!

In many interesting cases, R and H are also

graded by dimension. Sign conventions then

apply to commutativity formulae.

10



Two important Hopf algebras are the

polynomial Steenrod coalgebra (Fp, A∗)

Landweber-Novikov coalgebra (Z, B∗).

Here A∗ is the polynomial algebra

Fp[ξ1, . . . , ξn, . . . ], with dim ξn = 2(pn − 1)

and B∗ is the polynomial algebra

Z[b1, . . . , bn, . . . ], with dim bn = 2n.

The diagonal on A∗ is specified by

δp(ξn) =
n∑

i=0

ξ
pi

n−i ⊗ ξi.

The diagonal on B∗ is given by writing

b(x) =
∑
n≥0

bn xn+1

and equating coefficients in

δ(b)(x) = b′(b′′(x)), ($)

with b′kb′′j = bj ⊗ bk.
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Formula ($) also holds for δp over Fp! But

algebraic and topological imperatives suggest

that we should work p-locally instead.

In particular, we consider p-typical formal

power series

`(x) =
∑
n≥0

`n xpn

over Z(p)-algebras, where dim `n = 2(pn − 1).

The set of such power series is no longer a

group, because it fails to be closed under

composition or reversion.

At best, we can define a groupoid; so there is

no precise p-local analogue of the Hopf

algebra B∗.
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3. HOPF ALGEBROIDS

A Hopf algebroid over a commutative ring R

is a cogroupoid (D, Γ ) of commutative

R-algebras.

We write:

the cosource as the left unit ηL : D → Γ

the cotarget as the right unit ηR : D → Γ

the counit as ε : Γ → D.

So Γ has distinct left and right D-module

structures, induced by ηL and ηR.

Coproduct is the diagonal homomorphism

δ : Γ −→ Γ ⊗D Γ

of commutative R-algebras, where ⊗D uses

both module structures. We write the inverse

χ′ as conjugation c : Γ → Γ .

How can such objects possibly arise?
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A split Hopf algebroid may be constructed

from a commutative Hopf algebra (R, H)

whenever H coacts on the right of some

commutative R-algebra D. Then we take

(D, D ⊗R H),

where ηL includes the left copy of D and ηR is

the given coaction.

The coproduct is the D-module map

1⊗ δ : D ⊗R H −→ (D ⊗R H)⊗D (D ⊗R H)

induced by the diagonal on H.

Conjugation is generated by 1⊗ χ′ on 1⊗H,

and ηR on D ⊗ 1.
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The original examples arose in algebraic

topology, from homotopy commutative ring

spectra E. Up to homotopy, the product

defines the multiplication cogroupoid

(E, E ∧ E) (£)

of spectra. The homotopy ring π∗(E) = E∗ is

the graded commutative coefficient ring.

Then E defines a homology functor

E∗(−):

{
topological

spaces

}
−→

{
E∗-

modules

}
by E∗(X) = π∗(E ∧X).

Now apply π∗(−) to (£) to get a cogroupoid

(E∗, E∗(E))

of E∗-modules! For example, the left unit

ηL : E∗ −→ E∗(E)

is induced by s′ : E ' E ∧ S0 → E ∧ E.
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For the complex cobordism spectrum MU ,

the corresponding Hopf algebroid has

MU ∗ ∼= Z[x1, . . . , xn, . . . ],

where dimxn = 2n, and

MU ∗(MU ) ∼= MU ∗[b1, . . . , bn, . . . ] ∼= MU ∗ ⊗Z B∗.

In this case the Hopf algebroid is split,

because conjugation is so well behaved; it is

precisely 1⊗ χ′ on 1⊗B∗.

This is not true for the p-typical version,

given by the spectrum BP , even though the

Hopf algebroid (BP∗, BP∗(BP)) has

BP∗ ∼= Z(p)[v1, . . . , vn, . . . ],

where dim vn = 2(pn − 1), and

BP∗(BP ) ∼= BP∗[t1, . . . , tn, . . . ],

where dim vn = 2(pn − 1).
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4. COMBINATORIAL MODELS

Combinatorial models for coalgebraic

structures were probably first studied

seriously in the early 1970s.

Here is a model for B∗.

Let LP(n) be the Boolean algebra of linear

partitions of {1, . . . , n}. The finest partition

(1|2| . . . |n) is initial, and the coarsest partition

(1,2, . . . ,n) is final.

For example, LP (3) looks like

(1|2|3)
<−→ (1,2|3)

<

y y<

(1|2,3) −→
<

(1,2,3)

(U)

When λ is (λ1| . . . |λj), we write |λ| = j.
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Let Z (n) be the free abelian group generated

by all finite intervals in LP(∞), and impose

the coproduct

δ∞[λ, µ] =
∑

λ≤θ≤µ

[λ, θ]⊗ [θ, µ].

This is the incidence coalgebra of LP(∞).

Now reduce Z (n) by identifying all intervals

of equal type T . Here

T [(1|2| . . . |n), λ] = bi1−1 . . . bij−1

when the blocks of λ have size i1, . . . , ij, and

T [λ, µ] = [(1|2| . . . |j), µ/λ],

when j = |λ|. As always, b0 = 1.

Notice that singletons are invisible, and that

δ∞ is compatible with the identification ∼.

It follows that Z (n)/∼ is B∗!
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In (U), for example, we have

T [(1|2|3), (1,2,3)] = b2

and

T [(1|2|3), (1,2|3)] = T [(1,2|3), (1,2,3)] = b1.

So

δ(b2) = 1⊗ b2 + 2b1 ⊗ b1 + b2 ⊗ 1,

from (U), as required.

The challenge is to find a combinatorial

model for MU ∗ that makes the structure of

(MU ∗, MU ∗ ⊗Z B∗) transparent ...

... and then to realise (BP∗, BP∗(BP))!

And to move on to comodules over both!

Haiman has noted that A∗ is modeled by

equivalence classes of rooted trees. We aim

to adapt this to p-typical partitions over Z(p).
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