HOPF ALGEBROIDS for COMBINATORIALISTS

Nigel Ray

nige@ma.man.ac.uk

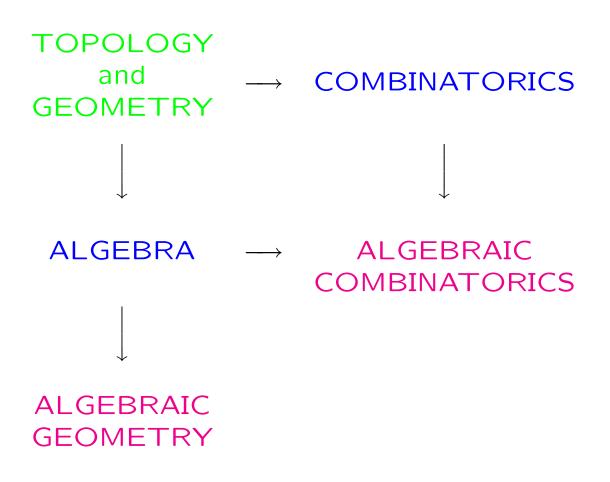
School of Mathematics University of Manchester Manchester M13 9PL

Includes joint work with Cristian Lenart and William Schmitt, owing much to Gian-Carlo Rota.

OVERVIEW

Aims: (i) to describe basic ideas underlying Hopf algebroids, **(ii)** to make the case for combinatorial models, **and (iii)** to provide simple examples, including origins in algebraic topology.

- 1. FROM GRAPHS TO COGROUPOIDS
- 2. HOPF ALGEBRAS
- 3. HOPF ALGEBROIDS
- 4. COMBINATORIAL MODELS



1. GRAPHS TO COGROUPOIDS

A digraph (V, E) has a set of vertices V and a set of edges E, and source and target functions $s, t: E \to V$. We assume that each vertex is endowed with a loop, given by a unit $i: V \to E$. So

$$s \cdot i = t \cdot i = \mathbf{1}_V.$$

We also have graphs of groups, graphs of topological spaces, graphs of algebras . . .

By turning the arrows around, we obtain a cograph (V', E'). This has cosource and cotarget functions s', $t' \colon V' \to E'$, and a counit $i' \colon E' \to V'$. They obey

$$i' \cdot s' = i' \cdot t' = \mathbf{1}_{V'}.$$

A group $(\{*\}, F)$ is a digraph with a single vertex *, whose edges F may be **composed** using a function $\mu: F \times F \to F$. This is associative, with unit i(*); so we write

$$i(*) = 1.$$

There is also an **inverse** $\chi \colon F \to F$, for which

$$\mu(h,\chi h) = \mu(\chi h,h) = 1.$$

We express these conditions as commutative diagrams of sets and functions. For example

$$\begin{array}{cccc} F & \stackrel{\delta}{\longrightarrow} & F \times F \\ * & & & & \downarrow 1 \times \chi \\ F & \longleftarrow & F \times F \end{array}$$

A group of topological spaces is nothing more than a topological group! A groupoid (V, G) is a digraph with vertices V, and a function $\mu: G \times_V G \to G$ which allows the edges G to be partially composed. Here

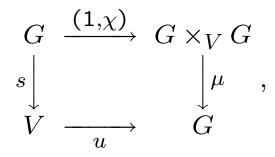
$$G \times_V G = \{(g,h) : t(g) = s(h)\} \subseteq G \times G.$$

This is associative whenever possible, with units $\{i(v) = 1_v : v \in V\}$.

There is also an **inverse** $\chi \colon G \to G$, such that

 $s(\chi g) = t(g)$ and $t(\chi g) = s(g)$, with $\chi^2 = 1$ and $\mu(\chi g, g) = 1_{t(g)}$ and $\mu(g, \chi g) = 1_{s(g)}$.

So there is a commutative diagram



for example.

A classic example is the pair groupoid

 $(W, W \times W)$

for any set (or C^{∞} -manifold, or algebra ..) W.

The functions $s = \pi_1$ and $t = \pi_2$ are the **projections**, and $i = \Delta$ is the **diagonal**. Since

 $(W \times W) \times_W (W \times W) \cong W \times W \times W$

we may define μ by

$$\mu(x,y,z) = (x,z).$$

Then $\chi(x,y) = (y,x)$.

Another famous groupoid is $(X, \Pi_1(X))$, the **fundamental groupoid** of the topological space X. The elements $p \in \Pi_1(X)$ with

$$s(p) = x$$
 and $t(p) = y$

are homotopy classes of paths from x to y.

A classic example of a **cogroupoid** is given by

 $(Y, Y \sqcup Y)$

for any set (or space, or algebra ...) Y.

The functions $s' = \iota_1$ and $t' = \iota_2$ are the **inclusions**, and $i' = \phi$ is the **fold**. Since

 $(Y \sqcup Y) \sqcup_Y (Y \sqcup Y) \cong Y \sqcup Y \sqcup Y,$

we may define **cocomposition** $\mu' = \delta$ as

$$Y \sqcup Y \cong Y \sqcup \emptyset \sqcup Y \longrightarrow Y \sqcup Y \sqcup Y.$$

Then χ' interchanges the summands of $Y \sqcup Y$.

For any commutative ring R there is an isomorphism of function algebras

$$R^{Y \sqcup Y} \cong R^Y \times R^Y,$$

and the cogroupoid maps induce the pair groupoid $(R^Y, R^Y \times R^Y)$ of rings.

There is a multiplication cogroupoid

 $(M, M \times M),$

for any abelian group or monoid M!

The cosource and cotarget maps are

$$s'(a) = (a, 1)$$
 and $t'(a) = (1, a),$

and the counit i' is the multiplication m. Cocomposition takes values in

$$(M \times M) \times (M \times M) / \sim$$
,

where

$$(a,b), (c,d) \sim (a,bc), (1,d) \sim (a,1), (bc,d);$$
 it is given by

$$\delta \colon M \times M \longrightarrow M \times M \times M,$$

with $\delta(a, b) = (a, 1, b)$. Also, $\chi'(a, b) = (b, a)$.

A cogroupoid with $V' = \{*\}$ is a **cogroup**; in this case, s' and t' coincide.

2. HOPF ALGEBRAS

A Hopf algebra over a commutative ring R is a cogroup (R, H) of R-algebras. In this context V' is the trivial R-algebra R, and the diagonal is an R-algebra homomorphism

 $\delta \colon H \longrightarrow H \otimes_R H.$

The counit $i' \colon H \to R$ is an augmentation, and χ' is the antipode.

The condition that δ be a morphism of R-algebras is also the condition that multiplication in H be a morphism of R-coalgebras!

In many interesting cases, R and H are also graded by dimension. Sign conventions then apply to commutativity formulae. Two important Hopf algebras are the polynomial Steenrod coalgebra (\mathbb{F}_p, A_*) Landweber-Novikov coalgebra (\mathbb{Z}, B_*) .

Here A_* is the polynomial algebra

 $\mathbb{F}_p[\xi_1, \dots, \xi_n, \dots],$ with dim $\xi_n = 2(p^n - 1)$ and B_* is the polynomial algebra

 $\mathbb{Z}[b_1,\ldots,b_n,\ldots],$ with dim $b_n=2n$.

The diagonal on A_* is specified by

$$\delta_p(\xi_n) = \sum_{i=0}^n \xi_{n-i}^{p^i} \otimes \xi_i.$$

The diagonal on B_* is given by writing

$$b(x) = \sum_{n \ge 0} b_n x^{n+1}$$

and equating coefficients in

$$\delta(b)(x) = b'(b''(x)), \qquad (\$)$$

with $b'_k b''_j = b_j \otimes b_k$.

Formula (\$) also holds for δ_p over $\mathbb{F}_p!$ But algebraic and topological imperatives suggest that we should work *p*-locally instead.

In particular, we consider p-typical formal power series

$$\ell(x) = \sum_{n \ge 0} \ell_n x^{p^n}$$

over $\mathbb{Z}_{(p)}$ -algebras, where dim $\ell_n = 2(p^n - 1)$.

The set of such power series is no longer a group, because it fails to be closed under composition or reversion.

At best, we can define a groupoid; so there is no precise *p*-local analogue of the Hopf algebra B_* .

3. HOPF ALGEBROIDS

A Hopf algebroid over a commutative ring R is a cogroupoid (D, Γ) of *commutative* R-algebras.

We write:

the cosource as the left unit $\eta_L \colon D \to \Gamma$ the cotarget as the right unit $\eta_R \colon D \to \Gamma$

the counit as $\epsilon \colon \Gamma \to D$.

So Γ has distinct left and right D-module structures, induced by η_L and η_R .

Coproduct is the diagonal homomorphism

$$\delta\colon \Gamma\longrightarrow\Gamma\otimes_D\Gamma$$

of commutative *R*-algebras, where \otimes_D uses both module structures. We write the inverse χ' as conjugation $c \colon \Gamma \to \Gamma$.

How can such objects possibly arise?

A **split** Hopf algebroid may be constructed from a commutative Hopf algebra (R, H)whenever H coacts on the right of some commutative R-algebra D. Then we take

 $(D, D \otimes_R H),$

where η_L includes the left copy of D and η_R is the given coaction.

The coproduct is the *D*-module map

 $1 \otimes \delta \colon D \otimes_R H \longrightarrow (D \otimes_R H) \otimes_D (D \otimes_R H)$ induced by the diagonal on H.

Conjugation is generated by $1 \otimes \chi'$ on $1 \otimes H$, and η_R on $D \otimes 1$. The original examples arose in algebraic topology, from homotopy commutative **ring spectra** *E*. Up to homotopy, the product defines the multiplication cogroupoid

$$(E, E \wedge E) \tag{(\pounds)}$$

of spectra. The homotopy ring $\pi_*(E) = E_*$ is the graded commutative **coefficient ring**.

Then E defines a homology functor

 $E_*(-): \left\{ \begin{array}{c} \text{topological} \\ \text{spaces} \end{array} \right\} \longrightarrow \left\{ \begin{array}{c} E_*- \\ \text{modules} \end{array} \right\}$ by $E_*(X) = \pi_*(E \wedge X).$

Now apply $\pi_*(-)$ to (\pounds) to get a cogroupoid

 $(E_*, E_*(E))$

of E_* -modules! For example, the left unit

 $\eta_L \colon E_* \longrightarrow E_*(E)$

is induced by $s' \colon E \simeq E \wedge S^0 \to E \wedge E$.

For the **complex cobordism** spectrum MU, the corresponding Hopf algebroid has

$$MU_* \cong \mathbb{Z}[x_1,\ldots,x_n,\ldots],$$

where dim $x_n = 2n$, and

 $MU_*(MU) \cong MU_*[b_1,\ldots,b_n,\ldots] \cong MU_* \otimes_{\mathbb{Z}} B_*.$

In this case the Hopf algebroid is split, because conjugation is so well behaved; it is precisely $1 \otimes \chi'$ on $1 \otimes B_*$.

This is not true for the *p*-typical version, given by the spectrum BP, even though the Hopf algebroid $(BP_*, BP_*(BP))$ has

$$BP_* \cong \mathbb{Z}_{(p)}[v_1,\ldots,v_n,\ldots],$$

where dim $v_n = 2(p^n - 1)$, and

$$BP_*(BP) \cong BP_*[t_1,\ldots,t_n,\ldots],$$

where dim $v_n = 2(p^n - 1)$.

4. COMBINATORIAL MODELS

Combinatorial models for coalgebraic structures were probably first studied seriously in the early 1970s.

Here is a model for B_* .

Let LP(n) be the Boolean algebra of linear partitions of $\{1, \ldots, n\}$. The finest partition $(1|2|\ldots|n)$ is initial, and the coarsest partition $(1,2,\ldots,n)$ is final.

For example, LP(3) looks like

When λ is $(\lambda_1 | \dots | \lambda_j)$, we write $|\lambda| = j$.

Let $\mathscr{Z}(n)$ be the free abelian group generated by all finite intervals in $LP(\infty)$, and impose the coproduct

$$\delta_{\infty}[\lambda,\mu] = \sum_{\lambda \leq \theta \leq \mu} [\lambda,\theta] \otimes [\theta,\mu].$$

This is the **incidence coalgebra** of $LP(\infty)$.

Now reduce $\mathscr{Z}(n)$ by identifying all intervals of equal type T. Here

 $T[(1|2|...|n), \lambda] = b_{i_1-1}...b_{i_j-1}$ when the blocks of λ have size i_1, \ldots, i_j , and

$$T[\lambda,\mu] = [(1|2|\ldots|j), \, \mu/\lambda],$$

when $j = |\lambda|$. As always, $b_0 = 1$.

Notice that singletons are invisible, and that δ_{∞} is compatible with the identification \sim .

It follows that $\mathscr{Z}(n)/\sim$ is $B_*!$

In (Y), for example, we have

$$T[(1|2|3), (1,2,3)] = b_2$$

and

 $T[(1|2|3), (1,2|3)] = T[(1,2|3), (1,2,3)] = b_1.$ So

$$\delta(b_2) = 1 \otimes b_2 + 2b_1 \otimes b_1 + b_2 \otimes 1,$$

from (¥), as required.

The challenge is to find a combinatorial model for MU_* that makes the structure of $(MU_*, MU_* \otimes_{\mathbb{Z}} B_*)$ transparent and then to realise $(BP_*, BP_*(BP))!$

And to move on to comodules over both!

Haiman has noted that A_* is modeled by equivalence classes of rooted trees. We aim to adapt this to *p*-typical partitions over $\mathbb{Z}_{(p)}$.