A Bijection for Unicellular Partitioned Bicolored Maps

Gilles Schaeffer and Ekaterina Vassilieva

- II. Notations
- III. Bijection
- IV. Proof
- V. Questions
- I. Introduction

Agenda

- II. Notations
- III. Bijection
- IV. Proof
 - V. Questions

Introduction

- II. Notations
- III. Bijection
- IV. Proof

I.

V. Questions

Geometrical Interpretation

Introduction

Notations

- I. Introduction
- II. Notations
- III. Bijection
- IV. Proof
- V. Questions

Notations

- I. Introduction
- II. Notations
- III. Bijection
- IV. Proof
- V. Questions

Geometrical Interpretation

Notations

- II. Notations
- III. Bijection
- IV. Proof
- V. Questions

- II. Notations
- III. Bijection
- IV. Proof
- V. Questions

Link between partitioned and non-partitioned unicellular bicolored maps

Bijection

$$\sum_{m,n\geq 1} B(m,n,N) y^m z^n = \sum_{p,q\geq 1} |C_{N,p,q}| (y)_p (z)_q$$

$$Our \text{ main result is equivalent to}$$

$$C_{N,p,q} = |BT(p,q)| |PP(N,N-1,N-1-(p+q))|$$
In order to proof our main result we only need to show
$$C_{N,p,q} \cong BT(p,q) \times PP(N,N-1,N-1-(p+q))$$

Bijection

- I. Introduction
- II. Notations
- III. Bijection
- IV. Proof
- V. Questions

Construction Rules for **T** :

- Let $m_1^i = \max(\pi_1^i)$ (the ith Block of π_1) and $m_2^j = \max(\pi_2^j)$
- i. The white block that contains the integer 1 is the root
- ii. The black block *j* is the descendant of the white *i* if $\beta(m_2^j) \in \pi_1^i$
- iii. The white block *i* is the descendant of the black *j* if $m_1^i \in \pi_2^j$
- iv. If black j and k are descendant of white i, j is on the left of k if $\beta(m_2^j) < \beta(m_2^k)$
- v. If white i and l are descendent of black j, i is on the left of l if $\beta^{-1}(m_1^i) < \beta^{-1}(m_1^i)$

Bijection

- I. Introduction
- II. Notations
- III. Bijection
- IV. Proof
- V. Questions

- II. Notations
- III. Bijection
- IV. Proof
- V. Questions

- II. Notations
- III. Bijection
- IV. Proof
- V. Questions

Proof

First Step : extension of the partial permutation and identification of the partitions' structure

- II. Notations
- III. Bijection
- IV. Proof
- V. Questions

Proof

I. Introduction

- II. Notations
- III. Bijection
- IV. Proof
- V. Questions

Second Step : Reconstruction of relabeling permutations																
$\lambda(\pi_1) = \{ \{ v(\pi_2) = \{ v(\pi_2) $	$\{1\}, \{2\}, \{3, 4, 5\}, \{1, 2\}, \{3, 4, 5, 6\}, \{1, 2\}, \{3, 4, 5, 6\}, \{1, 2, 3, 4\}, \{1, 2, 3, 4\}, \{1, 2, 3, 4\}, \{1, 2, 3, 4\}$	5,6,7,8 5,7,8,9 1,5,8,9	8,9,1 9,10 9,10	10}} }} }}	}	<u></u> =	$=\begin{pmatrix}1\\5\end{pmatrix}$	2 5 5	2 3 9 4	4 6	5 3	6 1	7 2	8 8	9 10	1
	γ : 1 λ : 3	2 3	4	5	6	7	8	9	10		tł	ne ro co:	oot b ntaii	olock ns1k	nent of that by $\lambda(1) =$	
$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$	$m{v}$: $m{\gamma}$: 1 $m{\lambda}$: 3	2 3	4	5	6	7	8	9	10		so t	elong hat	v(1)	ολ() is th	(π_2^2) e leas $\binom{2}{2}$ i.e $\binom{2}{2}$	
3	λ : 3	2 3 4	4	5	6	7	8	9	10	b	elor of	$\cos t$	to the π_1	e`sar as λ	l) = 5 ne blo $(\alpha\beta(1)$ e blo	oc 1))
$\frac{1}{n}$		2 3 4 5 4 5			7		8 9 8		10 2 10		$\lambda(\alpha)$ is th	by $\beta(1)$ ie le	α). H) = λ ast e	Hence $(\gamma(1))$		(2) on

- II. Notations
- III. Bijection
- IV. Proof
- V. Questions

- II. Notations
- III. Bijection
- IV. Proof
- V. Questions

Questions?