A Bijection for Unicellular Partitioned Bicolored Maps

Gilles Schaeffer and Ekaterina Vassilieva
I.	Introduction
II.	Notations
III.	Bijection
IV.	Proof
V.	Questions

I. Introduction
II. Notations
III. Bijection
IV. Proof
V. Questions
We want to compute \(B(m,n,N) \), the cardinality of the set of couples:

\[
(\alpha, \beta) \in \Sigma_N^2, \quad \text{tels que} \quad \begin{cases}
Z(\alpha) = m \\
Z(\beta) = n \\
\alpha \beta = \gamma = (1 \, 2 \, \ldots \, N)
\end{cases}
\]
I. Introduction
II. Notations
III. Bijection
IV. Proof
V. Questions

\[
\alpha = (1)(2\ 4)(3)(5\ 7)(6)(8\ 9)
\]
\[
\beta = (1\ 4\ 7\ 9)(2\ 3)(5\ 6)(8)
\]
Introduction

Solution:

\[
\sum_{m, n \geq 1} B(m, n, N) y^m z^n = N! \sum_{p, q \geq 1} \binom{N - 1}{p - 1} \binom{N - 1}{q - 1} y^p z^q
\]
In Order to prove our claim, we introduce a new class of objects: Partitioned Maps.

\(C_{N,p,q} \)

\((\pi_1, \pi_2, \alpha) \) such as

\[
\begin{align*}
\alpha & \in \Sigma_N \\
\pi_1 & \mapsto [N] \\
\pi_2 & \mapsto [N]
\end{align*}
\]

\(\pi_1 \) partitions the cycles of \(\alpha \)

\(\pi_2 \) partitions the cycles of \(\beta = \alpha^{-1}\gamma \)
Geometrical Interpretation

\[\alpha = (1)(2 \ 4)(3) \ (5 \ 7)(6)(8 \ 9) \]

\[\pi_1 = \{2,4,6\}, \{8,9\} \]

\[\pi_2 = \{2,3,5,6\}, \{1,4,7,8,9\} \]
Notations

Ordered Bicolored Trees and Partial Permutation

\[|BT(p,q)| = \frac{p + q - 1}{pq} \left(\frac{(p + q - 2)^2}{p - 1} \right) \]

\[|PP(X,Y,A)| = \binom{|X|}{A} \binom{|Y|}{A} A! \]

\[\sigma = \begin{pmatrix} 3 & 4 & 5 & 6 & 8 & 10 \\ 4 & 6 & 3 & 1 & 8 & 7 \end{pmatrix} \]

I. Introduction
II. Notations
III. Bijection
IV. Proof
V. Questions
Our main result is equivalent to

\[C_{N,p,q} = BT(p,q) \times PP(N,N-1,N-1-(p+q)) \]
Construction Rules for T:

Let $m_i^1 = \max(\pi_i^1)$ (the i^{th} Block of π_i) and $m_i^2 = \max(\pi_i^2)$

i. The white block that contains the integer 1 is the root

ii. The black block j is the descendant of the white i if $\beta(m_i^2) \in \pi_i$

iii. The white block i is the descendant of the black j if $m_i^1 \in \pi_j^1$

iv. If black j and k are descendant of white i, j is on the left of k if $\beta(m_i^2) < \beta(m_j^2)$

v. If white i and l are descendant of black j, i is on the left of l if $\beta^{-1}(m_i^1) < \beta^{-1}(m_l^1)$
I. Introduction
II. Notations
III. Bijection
IV. Proof
V. Questions

Partial Permutation (1/2) Relabeling

Bijection

\(\lambda \rightarrow 611 \)

\(\nu \rightarrow 442 \)

\(295 \rightarrow 184 \)

\(326 \rightarrow 858 \)

\(737 \rightarrow 569 \)
I. Introduction
II. Notations
III. Bijection
IV. Proof
V. Questions

\[\sigma = \begin{pmatrix} 1 & 3 & 4 & 7 & 9 \\ 4 & 7 & 1 & 6 & 2 \end{pmatrix} \]

Partial Permutation (2/2)

\[\{m_1^i\} \text{ and } \{\beta(m_2^j)\} \text{ used for the construction of the tree are not used for the construction of the partial permutation} \]
First Step : extension of the partial permutation and identification of the partitions’ structure

\[
\sigma = \begin{pmatrix}
3 & 4 & 5 & 6 & 8 & 10 \\
4 & 6 & 3 & 1 & 8 & 7 \\
\end{pmatrix}
\]

- 1, 2, 7 and 9 are missing on the first line.
- 2, 5, 9 and 10 are missing on the second line.

Using the tree construction rules we find:

\[
\lambda(m_1^1) = 1, \lambda(m_1^2) = 2, \lambda(\beta(m_2^1)) = 7, \lambda(\beta(m_2^2)) = 9
\]

\[
v(m_1^1) = 2, v(\beta^{-1}(m_1^1)) = 5, v(\beta^{-1}(m_1^2)) = 9, v(m_2^2) = 10
\]

There are 2 black blocks and 3 white ones.
First Step: extension of the partial permutation and identification of the partitions' structure

\[\lambda(\pi_1) = \{\{1\}, \{2\}, \{3, 4, 5, 6, 7, 8, 9, 10\}\} \]
\[\nu(\pi_2) = \{\{1, 2\}, \{3, 4, 5, 6, 7, 8, 9, 10\}\} \]

Then

\[\lambda(\pi_2) = \{\{6, 7\}, \{1, 2, 3, 4, 5, 8, 9, 10\}\} \]

\[\sigma = \begin{pmatrix} 3 & 4 & 5 & 6 & 8 & 10 \\ 4 & 6 & 3 & 1 & 8 & 7 \end{pmatrix} \]

\[\overline{\sigma} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 5 & 9 & 4 & 6 & 3 & 1 & 2 & 8 & 10 & 7 \end{pmatrix} \]
Proof

Second Step : Reconstruction of relabeling permutations

\[\lambda(\pi_1) = \{\{1\},\{2\},\{3,4,5,6,7,8,9,10\}\} \]
\[\nu(\pi_2) = \{\{1,2\},\{3,4,5,6,7,8,9,10\}\} \]
\[\lambda(\pi_2) = \{\{6,7\},\{1,2,3,4,5,8,9,10\}\} \]
\[\overline{\sigma} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 5 & 9 & 4 & 6 & 3 & 1 & 2 & 8 & 10 & 7 \end{pmatrix} \]

\(\gamma : 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \)
\(\lambda : 3 \)
\(\nu : \)
\(\gamma : 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \)
\(\lambda : 3 \)
\(\nu : 3 \)
\(\gamma : 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \)
\(\lambda : 3 \ 4 \)
\(\nu : 3 \)
\(\gamma : 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \)
\(\lambda : 3 \ 4 \ 5 \ 1 \ 6 \ 7 \ 8 \ 9 \ 10 \ 2 \)
\(\nu : 3 \ 4 \ 5 \ 6 \ 1 \ 2 \ 7 \ 8 \ 9 \ 10 \)

3 is the least element of the root block that contains 1 by construction : \(\lambda(1) = 3 \)

\(\lambda(1) = 3 \) belongs to \(\lambda(\pi_2^2) \) so that \(\nu(1) \) is the least element of \(\nu(\pi_2^2) \) i.e 3

\(\overline{\sigma}^{-1}(\nu(1)) = \lambda(\beta(1)) = 5 \) belongs to the same block of \(\lambda(\pi_1) \) as \(\lambda(\alpha\beta(1)) \) (cf. stability of the blocks by \(\alpha \)). Hence, \(\lambda(\alpha\beta(1)) = \lambda(\gamma(1)) = \lambda(2) \) is the least element non yet used of \(\lambda(\pi_1^3) \) i.e 4
Proof

And the map is there!
Questions

I. Introduction
II. Notations
III. Bijection
IV. Proof
V. Questions