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Agenda



We want to compute B(m,n,N) 
the cardinality of the set of couples :
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Our Problem

Enumerate
factorizations of a long cycle in two
 permutations with a fixed number 

of cycles  

Formally
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Introduction

Geometrical Interpretation
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Introduction

Solution :
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Notations
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In Order to prove our claim, we introduce a new class of 
objects : Partitioned Maps
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Notations

Geometrical Interpretation
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Notations

Ordered Bicolored Trees and Partial Permutation
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Bijection

Link between partitioned and non-partitioned 
unicellular bicolored maps
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Our main result is equivalent to
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CN ,p,q = BT(p,q) .PP N,N "1,N "1" (p + q)( )

In order to proof our main result we only need to show
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CN ,p,q " BT(p,q) # PP N,N $1,N $1$ (p + q)( )
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Bijection

Construction of the Bijection -- Bicolored Tree
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Construction Rules for T :

Let                          (the ith Block of     ) and

i.  The white block that contains the integer 1 is the root

ii.  The black block j  is the descendant of the white i if

iii.  The white block i  is the descendant of the black j if

iv.  If black j and k are descendant of white i, j is on the left of k if

v.  If white i and l are descendent of black j, i is on the left of l if
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Bijection
Partial Permutation (1/2) Relabeling
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Bijection
Partial Permutation (2/2)
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and 
used for the construction

 of the tree are not used for 
the construction of

 the partial permutation! 
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Proof
First Step : extension of the partial permutation 

and identification of the partitions’ structure
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1, 2, 7 and 9 are missing 
on the first line

2, 5, 9 and 10 are missing 
on the second line

There are 2 black blocks
and 3 white ones

Using the tree construction rules we find
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Proof
First Step : extension of the partial permutation 

and identification of the partitions’ structure
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Proof

Second Step : Reconstruction of relabeling permutations
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Proof

And the map is there !
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Questions ?
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