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Classical Permutation Statistics

For o in symmetric group &,
o Eulerian statistics
Descent set:  DES(o) :={i € [n]: 0(i) > o(i+ 1)}
Excedance set:  EXC(o):={i€[n]:0(i) > i}

des(o) := |DES(0)| exc(o) := |EXC(0)]
oc=232541 DES(¢) = {1,3,4}  des(o) =3
o = 32541 EXC(o) = {1,3} exc(o) =2

@ Mahonian statistics

inv(e) = [{(i,j):1<i<j<n & o(i)>c()}
maj(o) = Z i
i€DES(0)

inv(32541) =6  maj(32541) =1+3+4 =8



Classical Permutation Statistics

Eulerian polynomial

An(t) == Z pdes(o) _ Z rexc(o)

ceS, ceS,

’(‘53‘des‘exc‘

1231 0 0
132 ] 1 1
213 | 1 1
231 | 1 2
312 | 1 1
321 | 2 1

As(t) =1+4t+ 12



Classical Permutation Statistics

Eulerian polynomial

) — Z tdes(a) _ Z texc(cr)

ceS, ceS,

Basic formula:

n+1 Z(I + 1

i>0
Exponential generating function:

z" 11—t
At — = ——F+—
;) ( )n! ez(t=1) _ ¢



Classical Permutation Statistics

g-analogs
Z qan(O') _ Z qmaJ(U) — [”]q!

O’GGn Ue@n

where [n]g :=14+qg+ -+ q" ! and [n]g! := [n]g[n —1lg---[1]q

’ Gs3 ‘inv ‘ mayj ‘

123 0 0
132 1 1 2
213 | 1 1
231 | 2 2
312 | 2 1
321 | 3 3

1429+2¢°+¢°=(1+qg+¢*)(1+q)



g-Eulerian polynomials

Ainnv,deS(q’ t) — Z qinv(a) tdes(o)

ceS,

A;ﬂaLdeS(q, t) — Z qmaj(a) ¢des(o)
Ueen

Ainnv,exc(q’ t) — Z qinv(o) texc(a)
U€6n

A;naj,exc(qj t) — Z qmaj(o) texc(a')
O'GGn



g-Eulerian polynomials

Theorem (qg-exponential generating function, Stanley 1976)

inv,des 2" = (1 _ t)
where
equ(Z) Z [n]
n>0 a

Theorem (Gessel 1977)

AmaJ dCS(

—H, T Z[/ + 1]q

i>0




Eulerian and Mahonian partners

o (inv,des) ~ (maj,dmc) (Foata 1977)
@ (maj,des) ~ (den,exc) (Foata-Zeilberger 1990)
o (maj,des) ~ (inv,stc) (Skandera 2002)

e (inv,exc) ~ (mad,des) (Clarke-Steingrimsson-Zeng 2002)



The maj-exc distribution

Ainnv,des(q’ t) — Z qinv(a) tdes(a)

UGGn

A;naj,deS(q’ t) — Z qmaj(cr) tdes(a)
ceS,

Ainnv,exc(q’ t) — Z qinv(a)texc(cr)
O'GGn

Aznaj,exc(q’ t) — Z qmaj((r) texc((r)
JEGH



The maj-exc distribution

Ainnv,des(q’ t) — Z qinv(a) tdes(a)
O'GGn

A;naj,deS(q’ t) — Z qmaj(cr) tdeS(O')
ceS,

Ainnv,exc(q’ t) — Z qinv(a)texc(cr)
O'GGn

Aznaj,exc(q’ t) = Z qmaj(o‘) texc(a)
O'EGH

[Clarke-Steingrimsson-Zeng, 1995] It is of course possible
to define scores of different families of Eulerian-Mahonian
statistics by arbitrarily combining an Eulerian statistic
and a Mahonian one. Although some needles are sure to
be found in that haystack, most of the possible such
statistics seem rather unattractive and unlikely to posses
particular interesting properties.



The maj-exc distribution

Conjecture (Shareshian & MW 2005)

z" (1 tq)expy(2)
[n]g!  expy(ztq) — tqexp,(z)

Z A;naj,exc(q, t)

n>0




The maj-exc distribution

Conjecture (Shareshian & MW 2005)

z" (1 tq)expy(2)
[n]g!  expy(ztq) — tqexp,(z)

Z A;naj,exc(q, t)

n>0

g = 1: reduces to exp. gen. function formula for A,(t)

(1 - tq) expy(2) (1-ter  (1-1t)

expy(ztq) — tqexpy(z) et —te?  e2(t-D) —¢




The maj-exc distribution

Conjecture (Shareshian & MW 2005)

z" (1 tq)expy(2)
[n]g!  expy(ztq) — tqexp,(z)

Z A;naj,exc(q, t)

n>0

g = 1: reduces to exp. gen. function formula for A,(t)

(1 - tq) expy(2) (1-ter  (1-1t)

expy(ztq) — tqexpy(z) et —te?  e2(t-D) —¢

t=1: reduces to ) ¢, q™2i@) = [n],!



The maj-exc distribution

Conjecture (Shareshian & MW 2005)

z" (1 tq)expy(2)
[n]g!  expy(ztq) — tqexp,(z)

Z A;naj,exc(q, t)

n>0

g = 1: reduces to exp. gen. function formula for A,(t)

(1-tq)expy(z)  (1-1)e*  (1-1)
expy(ztq) — tqexpy(z) et —te?  e2(t-D) —¢

t=1: reduces to ) ¢, q™2i@) = [n],!

Computer verification up to n =9



Mahonian partner of des

Admissible inversion of o € &, is a pair (o(i),o(j)) such that
0 i<

e a(i) > a(j)
@ either
o o(j)<a(j+1)or
o Tk such that i < k < j and o(k) < o(j)

Let ai(o) := # admissible inversions of o.

Define aid(o) := ai(c) + des(o)

Admissible inversions of 24153



Mahonian partner of des

Admissible inversion of o € &, is a pair (o(i),o(j)) such that
0 i<

e a(i) > a(j)
@ either
o o(j)<a(j+1)or
o Tk such that i < k < j and o(k) < o(j)

Let ai(o) := # admissible inversions of o.

Define aid(o) := ai(c) + des(o)

Admissible inversions of 24153

(2,1)



Mahonian partner of des

Admissible inversion of o € &, is a pair (o(i),o(j)) such that
0 i<

e a(i) > a(j)
@ either
o o(j)<a(j+1)or
o Tk such that i < k < j and o(k) < o(j)

Let ai(o) := # admissible inversions of o.

Define aid(o) := ai(c) + des(o)

Admissible inversions of 24153

(2,1),(4,1)



Mahonian partner of des

Admissible inversion of o € &, is a pair (o(i),o(j)) such that
0 i<

e a(i) > a(j)
@ either
o o(j)<a(j+1)or
o Tk such that i < k < j and o(k) < o(j)

Let ai(o) := # admissible inversions of o.

Define aid(o) := ai(c) + des(o)

Admissible inversions of 24153

(2,1),(4,1),(4,3)



Mahonian partner of des

Admissible inversion of o € &, is a pair (o(i),o(j)) such that
0 i<

e a(i) > a(j)
@ either
o o(j)<a(j+1)or
o Tk such that i < k < j and o(k) < o(j)

Let ai(o) := # admissible inversions of o.

Define aid(o) := ai(c) + des(o)

Admissible inversions of 24153

(2,1),(4,1),(4,3)



Mahonian partner of des

Admissible inversion of o € &, is a pair (o(i),o(j)) such that
0 i<

e o(i) > a())
o either
o o(j)<a(j+1)or
o Tk such that i < k < j and o(k) < o(j)

Let ai(o) := # admissible inversions of o.

Define aid(o) := ai(c) + des(o)

Admissible inversions of 24153

(2,1),(4,1), (4.3)
So ai(24153) = 3 and aid(24.15.3) =3+ 2 = 5.



Mahonian partner of des

Theorem (Shareshian & MW 2005)

) (m 1—tqg)e
ZAild,des(q, t) Zz ( q) qu(Z)

aid(o) —

t=1: reducesto ) s g [n]4!. Hence aid is Mahonian.



Mahonian partner of des

Theorem (Shareshian & MW 2005)

. 2 1—tqg)e
ZAild,des(q, t) Zz ( q) qu(Z)

t =1: reduces to ) g, q*4(?) = [n],!. Hence aid is Mahonian.

Conjecture (Shareshian & MW)

(aid, des) and (maj,exc) are equidistributed on &,,.

A%id,des(q, t) — A;naj,exc(q’ t)

Computer verification up to n = 9.



Poset Topology

poset — simplicial complex

Order complex A(P) of a poset P is the simplicial complex whose
faces are the chains of P.

P A(P).



Poset Topology

Mobius function p: P x P — Z

0 ifx<Ly
n(x,y) =41 if x =y

_Zx<z§y H(Z,Y) if x <Yy




Poset Topology

Theorem (Ph. Hall)

For all x <y in P

M(X,}/) = X(A(X7 }/)),

where X is the reduced Euler characteristic.




Poset Topology

Theorem (Ph. Hall)

For all x <y in P

M(X,}/) = X(A(X7 }/)),

where X is the reduced Euler characteristic.

Euler-Poincaré formula
dim A _
B) = Y (1) dim F()
i=0
If H;(A(P)) =0 for all i < £(P) then

dim Fypy (A(P)) = (~1)Pu(P)



Rees Product-Bjorner & Welker, 2003

Let P and Q be pure (ranked) posets.
P+ Q:={(p,q) € Px Q:r(p) >r(q)}
(p1,q1) < (p2, q2) if the following holds

e p1<pp
° g1 <Q Q2
o r(p2) —r(p1) > r(g2) — r(q1)
123 3
12/1I3\23 * 2
1 2 3 1




Rees Product-Bjorner & Welker, 2003

Let P and Q be pure (ranked) posets.

PxQ:={(p,q) € PxQ:r(p)>r(q)}

(p1,91) < (p2, g2) if the following holds

° p1<pp2
° g1 <Qq
o r(p2) — r(p1) > r(q2) — r(a1)
(123,1) (123,2) (123,3)

(12,1) (13,1) (23,1) (12,1) (12,2) (13,1) (13,2) (23,1) (23,2) (12,2) (13,2) (23,2)

11 21 3,1 (1,1) 2,1) 3,1 11 @1 (3.1)



Rees Product-Bjorner & Welker, 2003

Theorem (Bjorner & Welker)

The Rees product of two Cohen-Macaulay posets is
Cohen-Macaulay. (CM means that homology of each interval
vanishes below its top dimension.)

Conjecture (Bjorner & Welker)

dim H,_1((Bn \ {0}) * C,) = # derangements in G,,.

Proved by Jonsson.



Maximal Intervals of Rees Product

Notation:
e [n] :={1,2,...,n}
o I, := the closed interval [0, ([n], )] of (B, \ {#}) * C,) UD
o I, := the open interval (0, ([n],/))

@ a, := # permutations in G, with k descents.

Theorem (Shareshian & MW)

For all j=1,...,n, the order complex A(l, ;) has the homotopy
type of a wedge of a,;_1 spheres of dimension n — 2.

The Bjorner-Welker-Jonsson result follows easily from this.



Maximal Intervals of Rees Product

(123,1)

/]\ (123,2) (123,3)

(12,1) (13,1) (23,1)
(12,1) (12,2) (13.0) (13,2) (23,1) (23.2) (12,2) (13,2) (23,2)

Ly @ @G { f j [ : ]

(1,1) (2,1) (3.1) 1) 21 @G

o>
o>



Maximal Intervals of Rees Product

(123,1)

/]\ (123,2) (123,3)

(12,1) (13,1) (23,1)
(12,1) (12,2) (13.0) (13,2) (23,1) (23.2) (12,2) (13,2) (23,2)

Ly @ @G { f j [ : ]

(1,1) (2,1) (3.1) 1) 21 @G

0 5 A
I3,1 /372 [3’3
p(0,1) = -1 w(0,1) = —4 p(0,1) = -1



Lexicographic Shellability

Definition (Bjorner 1980 - pure case)

Let P be a pure poset with a minimum 0 and a maximum 1. An
EL-labeling of P is a labeling of the edges of the Hasse diagram of
P so that the lexicographically first maximal chain of each closed
interval is the only increasing maximal chain of the interval.

123
m
12 13 23
2 2
1 3
1 2 3




Lexicographic Shellability

Theorem (Bjorner 1980)

Suppose P is pure and admits an EL-labeling with r decreasing

chains. Then A(P) has the homotopy type of a wedge of r spheres
of dimension ({(P) — 2).

Example: Number of decreasing chains is 1.

123
m
12 13 23
2 2
1 3
1 2 3




Lexicographic Shellability

Theorem (Bjorner 1980)

Suppose P is pure and admits an EL-labeling with r decreasing

chains. Then A(P) has the homotopy type of a wedge of r spheres
of dimension ({(P) — 2).

Example: Number of decreasing chains is 1.

12 13 23
SO = N\

13

B3 A(B3)



EL-labeling of /,;

Theorem (Shareshian & MW)

Forall j=1,...,n, the interval I, ; admits an EL-labeling with
apj—1 decreasing chains.

Poset of labels: product order on [n] x {0,1}

| Edge | Label | Code |

(S,1) — (Suda},i) (a,0) a

(S,1) — (Suda},i+1) ]| (a,1) a

0 — ({a},1) (a,0) a




EL-labeling of /, ;

(123,2)
3 1

(12,1) (12,2) (13,1) (13,2) (23,1) (23,2)

2 2
(1,1) 2.1) (3,1)

o>



EL-labeling of /, ;

(123,2)
3 1

(12,1) (12,2) (13,1) (13,2) (23,1) (23,2)

2 2
(1,1) 2.1) (3,1)

o>

Maximal chains of /,; correspond bijectively to barred
permutations with j — 1 bars in which the first letter is unbarred.
123, 321, etc.



EL-labeling of /,;

Let A, ; be the set of barred permutations w such that
@ w has j bars
@ w(1) is unbarred
e first entry w(i) of each ascent w(i) < w(i+ 1) is barred
@ second entry w(i + 1) of each ascent w(i) < w(i + 1) is
unbarred
Decreasing maximal chains correspond bijectively to the set A, ;1

Example: 315264 € Ago and 315264 ¢ Ag 3



EL-labeling of /,;

Let A, ; be the set of barred permutations w such that
@ w has j bars
@ w(1) is unbarred
e first entry w(i) of each ascent w(i) < w(i+ 1) is barred
@ second entry w(i + 1) of each ascent w(i) < w(i + 1) is
unbarred
Decreasing maximal chains correspond bijectively to the set A, ;1

Aso = {321}, A3 = {213,312,321,321}, A3, = {321}



EL-labeling of /,;

Let A, ; be the set of barred permutations w such that
@ w has j bars
@ w(1) is unbarred
e first entry w(i) of each ascent w(i) < w(i+ 1) is barred
@ second entry w(i + 1) of each ascent w(i) < w(i + 1) is
unbarred
Decreasing maximal chains correspond bijectively to the set A, ;1

Let An = .A.n70 H--- An7n_]_.
Bijection: ¢ : A, — &,

p(alB) = ¢(a)lp(p)
p(al) = lp(a)

Claim: # bars(w) = des(p(w))



EL-labeling of /,;

Let A, ; be the set of barred permutations w such that
@ w has j bars
@ w(1) is unbarred
e first entry w(i) of each ascent w(i) < w(i+ 1) is barred
@ second entry w(i + 1) of each ascent w(i) < w(i + 1) is
unbarred
Decreasing maximal chains correspond bijectively to the set A, ;1

Let An = .A.n70 H--- An7n_]_.
Bijection: ¢ : A, — &,

p(alB) = ¢(a)lp(p)
p(al) = lp(a)

Claim: # bars(w) = des(p(w))

Hence A(/,) has the homotopy type of a wedge of a,; 1
spheres of dimension n — 2.



g-Analog of /,;

Bn(q) := lattice of subspaces of Iy
Inj(q) := the closed interval [0, (F7, )] of ((Ba(g) \ {0}) * C,) UD

Theorem (Simion 1995)

Bn(q) admits an EL-labeling A\ such that
@ label sequence of each maximal chain is a permutation in &,

o for each o € &, there are ¢"™¥\?) maximal chains labeled by o




EL-labeling of I,,(q)

| Edge | Label | Code |

(U, 1) — (V,0) | (MU, V),0) | AU, V)

(U,i) — (V,i+1) | (AU, V),1) | XU, V)

0 — (V,1) (MU, V),0) | AU, V)

@ label sequence of each decreasing maximal chain is a barred
permutation in A, ;1

o for each w € A, ;1 there are ¢""(“!) decreasing maximal
chains labeled by w, where |w| means drop bars.



EL-labeling of I,,(q)

1nv(\w|
# decreasing maximal chains of /,;(q) = Z q
weAn 1



EL-labeling of I,,(q)

# decreasing maximal chains of /,;(q) = Z gl
WGA,U 1

Recall bijection ¢ : A, — &, # bars(w) = des(¢(w))
Claim: inv(Jw|) = ai(¢(w))
Therefore
# decreasing maximal chains of I, (q) = Z g7,



EL-labeling of I,,(q)

# decreasing maximal chains of /,;(q E g™ \wl
WGA,U 1

Recall bijection ¢ : A, — &, # bars(w) = des(¢(w))
Claim: inv(Jw|) = ai(¢(w))
Therefore
# decreasing maximal chains of /,(q) = Z g7,

Theorem (Shareshian & MW)
A(7,,,j(q)) has the homotopy type of a wedge of Z q*‘i(”)

spheres of dimension n — 2.




Tree Lemma

Let P be a pure poset of length n with min 0p and max 1p
Notation:

@ P* is the dual of P
o [;(P) is the interval [0, (1p, /)] of ((P\ {0p}) * C,) U {0}

@ T, is the poset whose Hasse diagram is the full t-ary tree of
height n with root at the bottom.



Tree Lemma

Let P be a pure poset of length n with min 0p and max 1p
Notation:

@ P* is the dual of P

o [;(P) is the interval [0, (1p, /)] of ((P\ {0p}) * C,) U {0}

@ T, is the poset whose Hasse diagram is the full t-ary tree of
height n with root at the bottom.




Tree Lemma - Left Hand Side

For P = B,(q)

LHS

n

=3 ull(Bala))¥

j=1

Z(_l)n Z qai(g) tj

j=1 o€ G,
des(o)=j—1

(~1)"t A3 (g, 1)



Tree Lemma - Right Hand Side

Let Ppe(q) = (Ba(q) * Tne) U {1}.

Upper interval
(U, x),1] = Pp_gimu,t(q)




Tree Lemma - Right Hand Side

Let Py :(q) := (Bn(q) * Tht) U {i}
Upper interval

[(U7X)7 1] = PnfdimU,t(q)
Mobius recurrence:

0 = 1+ Y u((U,x),1)

(Ux)<1

= 1+) [ ” (L+t+-+ ) u(Prre(q))
k=0 q



Tree Lemma - Right Hand Side

Let Ppe(q) = (Ba(q) * Tne) U {1}.

Upper interval
[(U7X)7 1] = PnfdimU,t(q)

Mobius recurrence:

0 = 1+ > (U
(Ux)<1
— 1+ZH] (L+t+-+ ) u(Prre(q))
k=0 q
:>ZM .t ( z" = (1 — 1) expy(2)

= [n] I texpg(zt) — expy(2)



Putting it all together

Tree Lemma:

Zu P)) ) = —u((P* * Toe) U{1})

3 ullni(@) ¢ = (1)t A3 (q, )

ZM « z0 _ (1 —t)exp,y(2)

—~ [n] I tequ(zt) = equ(z)




Putting it all together

Tree Lemma:

Zu P)) ) = —u((P* * Toe) U{1})

3 ullni(@) ¢ = (1)t A3 (q, )

ZM K z0 _ (1-1) equ(z)

—~ [n] I tequ(zt) = equ(z)

ZAai 7des(q t) z" o (]‘_ t)equ(Z)

= n " nlg! - expy(z t) — texp,(z)




Putting it all together

Tree Lemma:

Zu P)) ) = —u((P* * Toe) U{1})

3 ullni(@) ¢ = (1)t A3 (q, )

ZM K z0 _ (1-1) equ(z)

—~ [n] I tequ(zt) = equ(z)

ZAald des Zn o (]‘ B qt) equ(z)
= [n]q  expy(zqt) — qtexp,(z)




Equivariant version

Action of &, on B, induces an action of &, on /,; which induces
a representation of &, on H,_»(/5;)

Theorem (Shareshian and MW)

1+ Z zn:ChFln—2(7nJ) tj_lz” _ (1 = t)E(z)

e E(zt) — tE(2)

where ch is the Frobenius characteristic, E(z) = )<, enz" and e,
is the nth elementary symmetric function.

4

Proof involves
o Equivariant Tree Lemma

@ Whitney homology technique of Sundaram



Connection with Toric Varieties

Theorem (Procesi, Stanley 1989)

Let X, be the toric variety associated with the Coxeter complex of
&,,. The action of &, on X, induces a representation of &,, on
H%(X,).

ZnichHZf(xn) pon = L -DHE)

= H(zt) — tH(z)

where H(z) =Y, hnz" and h, is the nth complete
homogeneous symmetric function.

\

Corollary (Shareshian and MW)

H(X,) =g, Hoo(Tnj+1) ® sgn

A\

Stembridge 1992: nice characterization of &,-module stucture of
H%(X,)



Symmetric Function Generalization of Conjecture

‘ n 1 —tq)exp,(z
ZAznaJ,exc(q, t) 4 - = ( C[) pq( )
= [n]q! exp,(ztq) — tgexp,(z)




Symmetric Function Generalization of Conjecture

(1 —t)H(z)
H(zt) — tH(z)
X = qif1
z =2z(1-q)
t =qt

‘ n 1—tq)exp,(z
ZAznaJ,exc(q, t) 4 - = ( C[) pq( )
= [n]q! exp,(ztq) — tgexp,(z)




Symmetric Function Generalization of Conjecture

?

Xj = q"*l

z =2z(1-9q)
t =qt

§ :Amaj,exc z"
n (q7 t) |
>0 [”]q-

(1 —t)H(z)

H(zt) — tH(z)
Xj = qif1
z =2z(1-q)
t =qt

(1-—tq) equ(z)
expq(2tq) — tqexpy(2)




Symmetric Function Generalization of Conjecture

For 0 € G, let G be obtained by placing bars above each
excedance.

531462

View & as a word over ordered alphabet

{I<2<.---<n<l<2<---<n}.
Define
EXD(0) := DES(5)
EXD(531462) = DES(5.314.62) = {1,4}
Claim: Z i =maj(o) — exc(o)

iEEXD(0)



Symmetric Function Generalization of Conjecture

For S C [n — 1], quasisymmetric function

Fs(x1,x2,...) = Z Xy« Xi,

W >
j€5:>ij>ij+1

From theory of quasisymmetric functions we have
g>=°

Fs(1,q,q%...) = 1-q)1l-q2)...(1—q

Hence

maj(o)—exc(o)

- q

2
Foxp@) (1.4 ) = G =0 =) @ = qn)



Symmetric Function Generalization of Conjecture

~land z:=z(1—q) in

Z Z FEXD(U)texc(a)zn

n>00e6,

By setting x;j :=¢q

we get

z Z qmaj(cr exc(o)texc(a)[zl

n>00€e6,

Now set t := gt to get

D AR(q, 1) 0 ] _

n>0




Symmetric Function Generalization of Conjecture

Conjecture (Shareshian and MW)

Let
Qn,j = Z FEXD(O’)
o e 6n
exc(o) =
Then 1
n- , (1-t)H(2)
> 5 gtz LG
P H(zt) — tH(z)
Equivalently,
Qnj = ch(Ap—2(lnj+1) ® sgn) = ch(H(X,))

Computer verification up to n =9



Quasisymmetric function conjecture

Conjecture (Shareshian and MW)

@ The quasisymmetric function

@njx = Z FEXD(0)

o€ G,
exc(o) =j
type(o) = A

is symmetric and Schur positive for all A+ n and
j=0,1,....,n—1.

o Similarities with Gessel-Reutenauer quasisymmetric functions.




Closed form formula

Conjecture (Shareshian and MW)
Z qmaj(a) teXC(U) rﬁx(a) _

e,
15) N m
@ X [k ], et
m=0 ko >0 o imde i
Kiy .o km > 2
> ki=n

iz ] _ [n]q!
ko -, km q [kolq![kilq! - - - [km]q!

Equivalent to the earlier conjectures.



