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1 Groups and their actions.

1.1 In our treatment groups will appear always as transformation groups, the main
point being that, given a set X the set of all bijective mappings of X into X is a group
under composition. We will denote this group S(X) and call it the symmetric group of X.

In practice the full symmetric group is used only for X finite, in this case it is usually
more convenient to fix as X the interval [1, n] formed by the first n integers (for a given
value of n); in this case the corresponding symmetric group has n! elements and it is
indicated by Sn, its elements are called permutations.

In general the groups wich appear are subgroups of the full symmetric group, defined
by special properties of the set X arising from some extra structure (like a topology or
the structure of a linear space etc.), the groups of our interest will usually be symmetry
groups of the structure under consideration.

To illustrate this concept we start:

Definition. A partition of a set X is a family of non empty disjoint subsets Ai with union
X.

A partition of a number n is a (non increasing) sequence of positive numbers:

m1 ≥ m2 ≥ . . . ≥ mk > 0 with

k
∑

j=1

mj = n.

Remark. To a partition of the set [1, 2, . . . , n] we can associate the partition of n given by
the cardinality of the sets.

We usually will denote a partition by a greek letter λ := m1 ≥ m2 ≥ . . . ≥ mk and write
λ ` n to mean that it is a partition on n.
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2 Chap. 1, Group representations

We represent graphically such a partition by a Young diagram. The numbers mi

appear then as the lengths of the rows (cf. Chapter 3), e.g. λ =(8,5,5,2):

λ =

• •
• • • • •
• • • • •
• • • • • • • •

λ̃ =

•
•
•
• •
• • •
• • •
• • •
• • • •
• • • •

Sometimes it is useful to relax the condition and call partition of n any sequence

m1 ≥ m2 ≥ . . . ≥ mk ≥ 0 with
∑k

j=1 mj = n. We then call heigth of λ and denote it by

ht(λ) the number of non 0 elements in the sequence mi i.e. the number or rows of the
diagram.

We can also consider the columns of the diagram which will be thought as rows of the
dual partition, the dual partition of λ will be denoted by λ̃, for instance for λ = (8, 5, 5, 2)

we have λ̃ = (4, 4, 3, 3, 3, 1, 1, 1).

If X = ∪Ai is a partition, the set:

G := {σ ∈ Sn|σ(Ai) = Ai, ∀i},
is a subgroup of S(X), isomorphic to the product

∏

S(Ai) of the symmetric groups on the
sets Ai.

1.2 It is useful at this stage to procede in a formal way. We set:

Definition. An action of a group G on a set X is a mapping π : G × X → X, denoted
by gx := π(g, x) satisfying the following conditions:

(1.2.1) 1x = x, h(kx) = (hk)x

for all h, k ∈ G and x ∈ X.

The reader will note that the definition just given can be reformulated as follows:

i) The map %(h) := x → hx from X to X is bijective for all h ∈ G.

ii) The map % : G → S(X) is a group homomorphism.

In our theory we will usually fix our attention on a given group G and consider different
actions of the group, it is then convenient to refer to a given action on a set X as to a
G-set.
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Examples. a) The action of G as left multiplications on itself.

b) For a given subgroup H of G, the action of G on the set G/H := {gH|g ∈ G} of
cosets is given by:

(1.2.2) a(bH) := abH.

c) The action of G × G on G given by (a, b)c = acb−1.

d) The action of G by conjugation on itself.

e) The action of a subgroup of G induced by restricting an action of G.

It is useful right from the start to use a categorical language:

Definition. Given two G−sets X, Y , a G−equivariant mapping, or more simply a mor-
phism, is a map f : X → Y such that for all g ∈ G and x ∈ X we have:

f(gx) = gf(x).

In this case we also say thet f intertwines the two actions. Of course if f is bijective we
speak of an isomorphism of the 2 actions.

The class of G−sets and equivariant maps is clearly a Category.

This is particularly important when G is the homotopy group of a space X and the
G−sets correspond to covering spaces of X.

Example. The equivariant maps of the action of G on itself by left multiplication are the
right multiplications. They form a group isomorphic to the opposite of G (but also to G).

More generally:

Proposition. The invertible equivariant maps of the action of G on G/H by left multi-
plication are induced by the right multiplications with elements of the normalizer NG(H)
of H (cf. 1.4). They form a group Γ isomorphic to NG(H)/H.

Proof. Let σ : G/H → G/H be such a map, hence for all a, b ∈ G we have σ(a.bH) =
aσ(bH). In particular if σ(H) = uH we must have that:

σ(H) = uH = σ(hH) = huH, ∀h ∈ H, =⇒ Hu ⊂ uH.

If we assume σ to be invertible we see that also Hu−1 ⊂ u−1H hence uH = Hu and
u ∈ NG(H). Conversely if u ∈ NG(H) the map σ(u) : aH → auH = aHu is well defined
and in Γ. The map u → σ(u−1) is clearly a surjective homomorphism from NG(H) to Γ
with kernel H.

Exercise Describe the set of equivariant maps G/H → G/K for 2 subgroups.

2 Orbits, invariants and equivariant maps.

2.1 The first important notion in this setting is given by the following:
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Proposition. The binary relation R in X given by: xRy if and only if there exists g ∈ G
with gx = y, is an equivalence relation.

Definition. The equivalence classes under the previous equivalence are called G-orbits (or
simply orbits), the orbit of a given element x is formed by the elements gx with g ∈ G and
is denoted Gx. The mapping G → Gx given by g → gx is called the orbit map.

The orbit map is equivariant (with respect to the left action of G). The set X is
partitioned in its orbits, and the set of all orbits (quotient set) is denoted by X/G.

In particular we say that the action of G is transitive or that X is a homogeneous space
if there is a unique orbit.

More generally we say that a subset Y of X is G stable if it is a union of orbits. In this
case G induces naturally an action on Y . Of course the complement C(Y ) of Y in X is
also G stable and X is decomposed as Y ∪ C(Y ) in 2 stable subsets.

The finest decomposition into stable subsets is the decomposition into orbits.

Basic examples

i Let σ ∈ Sn be a permutation and A the cyclic group which it generates, then the orbits
of A on the set [1, n] are the cycles of the permutation.

ii Let G be a group and H, K be subgroups, we have the action of H × K on G induced
by the left and right action. The orbits are the double cosets. In particular if either H
or K is 1 we have left or right cosets.

iii Consider G/H, the set of left cosets gH, with the action given by 1.2.2. Given a subgroup
K on G/H the K orbits in G/H are in bijictive correspondence with the double coset
KgH.

iv The action of G on itself by conjugation (g, h) → ghg−1. Its orbits are the conjugacy
classes.

v An action of the additive group R+ of real numbers on a set X is called a 1-parameter
group of transformations or in a more physical language a reversible dynamical system.

In this case the parameter t is thought as time and an orbit is seen as the time evolution
of a physical state. The hypotheses of the group action mean that the evolution is reversible
(i.e. all the group transformations are invertible) and the forces do not vary with time
so that the evolution of a state depends only on the time lapse (group homomorphism
property).

The previous examples lead to single out the following general fact:

Remark. Let G be a group and K a normal subgroup in G, if we have an action of
G on a set X we see that G acts also on the set of K orbits X/K, since gKx = Kgx,
moreover we have (X/K)/G = X/G.

2.2 The study of group actions should start with the elementary analysis of a single
orbit. The next main concept is that of stabilizer:
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Definition. Given a point x ∈ X we set Gx := {g ∈ G|gx = x}. Gx is called the
stabilizer (or little group) of x.

Proposition. Gx is a subgroup and the action of G on the orbit Gx is isomorphic to the
action on the coset space G/Gx.

Proof. The fact that Gx is a subgroup is clear. Given two elements h, k ∈ G we have that
hx = kx if and only if k−1hx = x or k−1h ∈ Gx.

The mapping between G/Gx and Gx which assigns to a coset hGx the element hx is
thus well defined and bijective, it is also clearly G−equivariant and so the claim follows.

Example. Consider the action of G × G on G by left right translation. G is a single
orbit and the stabilizer of 1 is the subgroup ∆ := {(g, g)|g ∈ G} isomorphic to G embedded
in G × G diagonally.

Example. In the case of a 1-parameter subgroup acting continuously on a topological
space, the stabilizer is a closed subgroup of R. If it is not the full group it is the set of
integral multiples ma, m ∈ Z of a positive number a. The number a is to be considered
as the first time in which the orbit returns to the starting point. This is the case of a
periodic orbit.

Remark. Given two different elements in the same orbit their stabilizers are conjugate, in
fact Ghx = hGxh−1. In particular when we identify an orbit to a coset space G/H this
implicitely means that we have made the choice of a point for which the stabilizer is H.

Remark. The orbit cycle decomposition of a permutation can be interpreted in the previous
language. To give a permutation on a set S is equivalent to give an action of the group of
integers Z on S.

If S is finite this induces an action of a finite cyclic group isomorphic to Z/(n).
To study a single orbit we only remark that a subgroup will be of the form Z/(m) with

m a divisor of n. The corresponding coset space is Z/(m) and the generator 1 of Z/(n)
acts on Z/(m) as the cycle x → x + 1.

Consider the set of all subgroups of a group G, on this set G acts by conjugation.
The orbits of this action are the conjugacy classes of subgroups, let us denote by [H] the
conjugacy class of a subgroup H.

The stabilizer of a subgroup H under this action is called its normalizer. It should not
be confused with the centralizer which for a given subset A of G is the stabilizer under
conjugation of all the elements of A.

Given a group G and an action on X it is useful to introduce the following notions.
For an orbit in X the conjugacy class of the stabilizers of its elements is well defined.

We say that two orbits are of the same orbit type if the associated stabilizer class is the
same. This is equivalent to say that the two orbits are isomorphic as G−spaces. It is often
useful to partition the orbits according to the orbit types.

Exercise Determine the points in G/H with stabilizer H.
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Exercise The group of symmetries of the G action permutes transitively orbits of the
same type.

Suppose that G and X are finite and assume that we have ni orbits of type [Hi] then
we have, from the partition into orbits, the formula:

|X|
|G| =

∑

i

ni

|Hi|
we denote in general by |A| the cardinality of a finite set A.

Exercise Let G be a group with pmn elements, p a prime number not dividing n.
Deduce the theorems of Sylow by considering the action of G by left multiplication on the
set of all subsets of G with pm elements (Wielandt).

Exercise Given two subgroups H, K of G describe the orbits of H acting on G/K, in
particular give a criterion for G/K to be a single H orbit.

Discuss the special case [G : H] = 2.

2.3 From all the elements of X we may single out the ones for which the stabilizer is
the full group G.

These are the fixed points of the action or invariant points, i.e. the points whose orbit
consists of the point alone. These points will be usually denoted by XG.

XG := {fixed points or invariant points}.
We have thus introduced in a very general sense the notion of Invariant but its full meaning
for the moment is completely obscure, we have first to procede with the formal theory.

2.4 One of the main features of set theory consists in the fact that it allows us to
perform constructions, out of given sets we construct new ones.

This is also the case of G−sets. Let us point out at least 2 constructions:

(1) Given 2 G−sets X, Y we give the structure of a G−set to their disjoint sum X tY
by acting separately on the two sets and to their product X × Y setting:

(2.4.1) g(x, y) := (gx, gy),

(i.e. once the group acts on the elements it acts also on the pairs.)
(2) Consider now the set Y X of all maps from X to Y , we can act with G (verify it)

setting:

(2.4.2) (gf)(x) := gf(g−1x).

Notice that in the second definition we have used again twice the action of G, the
particular formula given is justified by the fact that it is really the only way to get a group
action using the two actions.1

We want to explicit immediately a rather important consequence of our formalism:

1It reflects a general fact well known in category theory, that maps between two objects X,Y are a

covariant functor in Y and controvariant in X.
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Proposition. A map f : X → Y between two G−sets is equivariant (cf. 1.2) if and only
if it is a fixed point under the G−action on the maps.

Proof. This statement is really a tautology, nevertheless deserves to be clearly understood.
The proof is trivial following the definitions. Equivariance means that f(gx) = gf(x). This,
if we substitute x with g−1x, reads f(x) = gf(g−1x) which in the functional language
means that the function f equals the function gf , i.e. it is invariant.

Exercise

i) Show that the orbits of G on G/H ×G/K are in canonical 1-1 correspondence with the
double cosets HgK of G.

ii) Given a G equivariant map π : X → G/H show that:

a) π−1(H) is stable under the action of H.
b) The set of G orbits on X is in 1-1 correspondence with the H orbits on π−1(H).
c) Study the case in which X = G/K is also homogeneous.

2.5 We will often consider a special case of the previous section, the case of the trivial
action of G on Y . In this case of course the action of G on the functions is simply:

(2.5.1) (gf)(x) = f(g−1x)

A mapping is equivariant if and only if it is constant on the orbits. In this case we will
always speak of Invariant function. In view of the particular role of this idea in our
treatment we repeat the formal definition.

Definition. A function f on a G set X is called an invariant if f(g−1x) = f(x) for all
x ∈ X and g ∈ G.

As we have just remarked a function is invariant if and only if it is constant on the orbits.
Formally we may thus say that the quotient mapping π := X → X/G is an invariant map
and any other invariant function factors as :

X
f

//

π
!!DD

DD
DD

DD
Y

X/G
f

=={{{{{{{{

We want to explicit the previous remark in a case of importance.

Let X be a finite G set. Consider a field F (a ring would suffice) and the set F X of
functions on X with values in F .

An element x ∈ X can be identified to the characteristic function of {x}, in this way X
becomes a basis of F X as vector space.

The induced group action of G on F X is by linear transformation and by permuting the
basis elements.

FX is called a permutation representation and we will see its role in the next
sections. Since a function is invariant if and only if it is constant on orbits we deduce:
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Proposition. The invariants of G on F X form the subspace of F X having as basis the
characteristic functions of the orbits.

In other words given an orbit O consider uO :=
∑

x∈O x. The elements uO form a basis

of (F X)G.

We finish this section with two examples which will be useful in the theory of symmetric
functions.

Consider the set [1, n] := {1, 2, . . . , n} with its canonical action of the symmetric group.

The maps from {1, 2, . . . , n} to the field R of real numbers form the standard vector
space Rn. The symmentric group then acts by permuting the coordinates and in every
orbit there is a unique vector (a1, a2, . . . , an) with a1 ≥ a2 ≥ . . . ≥ an.

The set of these vectors can thus be identified to the orbit space. It is a convex cone
with boundary the elements in which at least two coordinates are equal.

Exercise Discuss the orbit types of the previous example.

Definition. A function M : {1, 2, . . . , n} → N (to the natural numbers) is called a mono-
mial. The set of monomials is a semigroup by addition of values and we indicate by xi

the monomial which is the characteristic function of {i}.

As already seen the symmetric group acts on these functions by (σf)(k) := f(σ−1(k))
and the action is compatible with the addition, moreover σ(xi) = xσ(i).

Remark. It is customary to write the semigroup law of monomials multiplicatively. Given
a monomial M if M(i) = hi we have that M = xh1

1 xh2

2 . . . xhn
n . The number

∑

i hi is the
degree of the monomial.

Representing a monomial as a vector (h1, h2, . . . , hn) we see that every monomial is
equivalent, under the symmetric group, to a unique vector in which the coordinates are
non increasing. The non zero coordinates of such a vector form thus a partition, with at
most n parts, of the degree of the monomial.

The permutation representation with coefficients in a commutative ring F , associated to
the monomials is the polynomial ring F [x1, . . . , xn] in the given variables. The invariant
elements are called symmetric polynomials.

Exercise To a monomial M we can also associate a partition of the set {1, 2, . . . , n}
by the equivalence i ∼= j iff M(i) = M(j), show that the stabilizer of M is the group of
permutations which preserve the sets of the partition (cf. 1.1) and determine a basis of
invariant symmetric polynomials.

2.6 It is time to develop some other examples. First of all consider the set [1, n] and
a ring A (in most applications the integers or the real or complex numbers).

A function f from [1, n] to A may be thought as a vector and displayed for instance
as a row with the notation (a1, a2, . . . , an) where ai := f(i). The set of all functions is



3 Linear actions, groups of automorphisms, commuting groups. 9

thus denoted by An. The symmetric group acts on such functions according to the general
formula 2.5.1.

σ(a1, a2, . . . , an) = (aσ−11, aσ−12, . . . , aσ−1n).

In this simple example we already see that the group action is linear. We will refer to this
action as the standard permutation action.

Remark that if ei denotes the canonical basis vector with coordinates 0 except 1 in the
ith position, we have σ(ei) = eσ(i). This formula allows us to describe the matrix of σ in
the given basis, it is the matrix δσ−1(j),i. These matrices are called permutation matrices.

This is a general fact, if we consider a G−set X and a ring A, the set of functions on
X with values in A form also a ring under pointwise sum and multiplication and we have
that:

Remark. The group G acts on the functions with values in A as a group of ring automor-
phisms.

In this particular example it is important to procede further. Once we have the action
of Sn on An we may continue and act on the functions on An! In fact let us consider the
coordinate functions: xi : (a1, a2, . . . , an) → ai, it is clear from the general formulas that
the symmetric group permutes the cordinate functions and σ(xi) = xσ(i). The reader may
note the fact that the inverse has now disappeared.

If we have a ring R and an action of a group G on R as ring automorphisms it is clear
that:

Proposition. The invariant elements form a subring of R.

Thus we can speak of the ring of invariants RG.

2.7 We need another generality. Suppose that we have two group actions on the same
set X i.e. assume that we have two groups G and H acting on the same set X.

We say that the two actions commute if gh(x) = hg(x) for all x ∈ X, g ∈ G and h ∈ H.

This means that every element of G gives rise to an H equivariant map (or we can
reverse the roles of G and H) it also means that we really have an action of the product
group G × H on X given by (g, h)x = ghx.

In this case we easily see that if a function f is G invariant and h ∈ H then hf is also
G invariant. Hence H acts on the set of G invariant functions.

More generally suppose that we are given a G action on X and a normal subgroup K of
G, then it easily seen that the quotient group G/K acts on the set of K invariant functions
and a function is G invariant if and only if it is K and G/K invariant.

Example. The right and left action of G on itself commute (Example 1.2 c).

3 Linear actions, groups of automorphisms, commuting groups.



10 Chap. 1, Group representations

3.1 In 2.5, given an action of a group G on a set X and a field F , we have
deduced an action over the set F X of functions from X to F , which is linear, i.e. given by
linear operators.

In general the groups G and the sets X on which they act may have further structures,
as in the case of a topological or differentiable or algebraic action. In these cases it will be
important to restrict the set of functions to the ones compatible with the structure under
consideration, we will do it systematically.

If X is finite the vector space of functions on X with values in F has, as a possible basis,
the characteristic functions of the elements. It is convenient to identify an element x with
its characteristic function and thus say that our vector space has X as a basis (cf. 2.5).

A function f is thus written as
∑

x∈X f(x)x, the linear action of G on F X induces
on this basis the action from which we started, we call such an action a permutation
representation.

In the algebraic theory we may in any case consider the set of all functions which are
finite sums of the characteristic functions of points, i.e. the functions which are 0 outside
a finite set.

These are usually called functions with finite support, we will often denote these
functions by the symbol F [X], which is supposed to remind us that its elements are linear
combinations of elements of X.

In particular for the left action of G on itself we have the algebraic regular repre-
sentation of G on F [G]. We shall see that this representation is particularly important.

Let us stress a feature of this representation.

We have two actions of G on G, the left and the right action, which commute with each
other, or in other words we have an action of G × G on G, given by (h, k)g = hgk−1 (for
which G = G × G/∆ where ∆ = G embedded diagonally cf. 1.2c and 2.2).

Thus we have the corresponding two actions on F [G] by (h, k)f(g) = f(h−1gk) and we
may view the right action as symmetries of the left action and conversely.

Sometimes it is convenient to denote by hfk = (h, k)f to stress the left and right actions.

After these basic examples we give a general definition:

Definition. Given a vector space V over a field F (or more generally a module) we
say that an action of a group G on V is linear if every element of G induces a linear
transformation on V , a linear action of a group is also called a linear representation 2 or
also a G−module.

In a different language let us consider the set of all linear invertible transformations of
V , this is a group under composition ( i.e. it is a subgroup of the group of all invertible
transformations) and will be called the:

General linear group of V , indicated with the symbol GL(V ).

2sometimes we drop the term linear and just speak of a representation
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In case we take V = F n (or equivalently in case V is finite dimensional and we identify
V with F n by choosing a basis) we can identify GL(V ) with the group of n× n invertible
matrices, denoted GL(n, F ).

According to our general principles a linear action is thus a homomorphism % of G in
GL(V ) (or in GL(n, F )).

When we are dealing with linear representations we usually consider also equivariant
linear maps between them, thus obtaining a category and a notion of isomorphism.

Exercise Two linear representations ρ1, ρ2 : G → GL(n, F ) are isomorphic if and
only if there is an invertible matrix X ∈ GL(n, F ) such that Xρ1(g)X−1 = ρ2(g) for all
g ∈ G.

Before we procede any further we should remark an important feature of the theory.

Given 2 linear representations U, V we can form their direct sum U ⊕ V which is a
representation by setting g(u, v) = (gu, gv). If X = A ∪ B is a G set, disjoint union of 2
G stable subsets, we clearly have F A∪B = F A ⊕F B thus the decomposition in direct sum
is a generalization of the decomposition of a space in G stable sets.

If X is an orbit it cannot be further decomposed as set while F X might be decomposable.
The simplest example is G = {1, τ = (12)} the group with 2 elements of permutations of
[1, 2], the space F X decomposes (charF 6= 2), setting:

u1 :=
e1 + e2

2
, u2 :=

e1 − e2

2

we have τe1 = e1, τ(e2) = −e2.

We have implicitely used the following ideas:

Definition. i) Given a linear representation V a subspace U of V is a subrepresenta-
tion if it is stable under G.

ii) V is a decomposable representation if we can find a decomposition V = U1 ⊕U2

with the Ui proper subrepresentations, otherwise it is called indecomposable.

iii) V is an irreducible representation if the only subrepresentations of V are V and 0.

We will study in detail some of the deep connections between these notions.

We will stress in a moment the analogy with the abstract theory of modules over a ring
A. First 2 basic examples:

Example. Let A, B be the group of all, resp. of upper triangular (i.e. 0 below the diagonal)
invertible n × n matrices over a field F .

Exercise The vector space F n is irreducible as an A module, indecomposable but not
irreducible as a B module.

Definition. Given 2 linear representations U, V of a group G, the space of G equivariant
linear maps is denoted HomG(U, V ) and called: Space of intertwining operators.

In these notes unless specified otherwise our vector spaces will always be assumed to be
finite dimensional.
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It is quite useful to rephrase the theory of linear representations in a different way:

Consider the space F [G]:

Theorem. i) The group multiplication extends to a bilinear product on F [G] for which
F [G] is an associative algebra with 1, called the group algebra.

ii) Linear representations of G are the same as F [G] modules.

Proof. The first part is immediate. As for the second given a linear representation of G
we have the module action (

∑

g∈G agg)v :=
∑

g∈G ag(gv). The converse is clear.

It is useful to view the product of elements of F [G] as convolution of functions:

(ab)(g) =
∑

h,k∈G |hk=g

a(h)b(k) =
∑

h∈G

a(h)b(h−1g) =
∑

h∈G

a(gh)b(h−1)

this definition extends to L1−functions on locally compact groups endowed with Haar
measure.

Remark. 1) Consider the left and right action on the functions F [G].

Let h, k, g ∈ G and identify g with the characteristic function of the set {g} then
hgk = hgk−1 (as functions).

The space F [G] as G × G module is the permutation representation associated to G =
G × G/∆ with its G × G action (3.1).

Thus a space of functions on G is stable under left (res. right) action if and only if it is
a left (resp. right) ideal of the group algebra F [G].

2) Notice that the direct sum of representations is the same as the direct sum as modules,
also a G linear map between two representations is the same as a module homomorphism.

Example. Let us consider a finite group G, a subgroup K and the linear space F [G/K],
which as we have seen is a permutation representation.

We can identify the functions on G/K as the functions

(3.1.1) F [G]K = {a ∈ F [G]|ah = a, ∀h ∈ K}.
on G which are invariant under the right action of K. In this way the element gK ∈ G/K
is identified to the characteristic function of the coset gK and F [G/K] is identified to the
left ideal of the group algebra F [G] having as basis the characteristic functions χgK of the
cosets.

If we denote by u := χK the characteristic function of the subgroup K we see that
χgK = gu and u generates this module over F [G].

Given 2 subgroups H, K and the linear spaces F [G/H], F [G/K] ⊂ F [G] we want to
determine their intertwiners.

For an intertwiner f , and u := χH as before, let f(u) = a ∈ F [G/K]. We have
hu = u, ∀h ∈ H and so, since f is an intertwiner a = f(u) = f(hu) = ha. Thus we must
have that a is also left invariant under H. Conversely given such an a the map b → ba

|H| is

an intertwiner mapping u to a. Since u generates F [G/H] as a module we see that:
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Proposition. The space HomG(F [G/H], F [G/K]) of intertwiners can be identified with
the (left) H invariants of F [G/K], or to the H–K invariants HF [G]K of F [G]. It has as
basis the characteristic funtions of the double cosets HgK.

In particular for H = K we have that the functions which are biinvariants under H form
under convolution the endomorphism algebra of F [G/H].

These functions have as basis the characteristic funtions of the double cosets HgH, one
usually indicates by Tg = THgH the corresponding operator. In this way we have the Hecke
algebra and Hecke operators, the multiplication rule between such operators depends on
the multiplication on cosets HgHHkH = ∪HhiH and each double coset appearing in this
product appears with a positive integer multiplicity so that TgTh =

∑

niThi
.3

Similar results when we have 3 subgroups H, K, L and compose:

HomG(F [G/H], F [G/K]) × HomG(F [G/K], F [G/L])
◦−→ HomG(F [G/H], F [G/L])

The notion of permutation representation is a special case of that of induced repre-
sentation, if M is a representation of a subgroup H of a group G we consider the space
of functions f : G → M with the constrain:

IndG
HM := {f : G −→ M |f(gh−1) = hf(g), ∀h ∈ H, g ∈ G}.

On this space of functions define a G action by (gf)(x) := f(g−1x). It is easy to see that
this is a well defined action. Moreover we can identify m ∈ M with the function fm such
that fm(x) = 0 if x /∈ H and fm(h) = h−1m if h ∈ H.

Exercise Verify that, choosing a set of representatives of the cosets G/H we have as
vector space the decomposition

IndG
HM := ⊕g∈G/H gM.

3.2 Let V be a G−module. Given a linear function f ∈ V ∗ on V , by definition the
function gf is given by (gf)(v) = f(g−1v) and hence it is again a linear function.

Thus G acts dually on the space V ∗ of linear functions and it is clear that this is a linear
action which is called the contragredient action.

In matrix notations, using dual bases, the contragredient action of an operator T is
given by the inverse transpose of the matrix of T .

We will use the notation < ϕ|v > for the value of a linear form on a vector and thus
have the identity:

(3.2.1) < gϕ|v >=< ϕ|g−1v > .

3It is important in fact to use these concepts in a much more general way as done by Hecke in the

theory of modular forms. Hecke studies the action of Sl(2, Z) on M2(Q) the 2 × 2 rational matrices. In

this case one has also double cosets, a product structure on M2(Q) and the fact that a double coset is a
finite union of right or left cosets. These properties suffice to develop the Hecke algebra. In this case this

algebra acts on a different space of functions, the modular forms (cf. Ogg).
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Alternatively it may be convenient to define on V ∗ a right action by the more symmetric
formula:

(3.2.2) < ϕg|v >=< ϕ|gv > .

Exercise. Prove that the dual of a permutation representation is isomorphic to the same
permutation representation. In particular one can apply this to the dual of the group
algebra.

In the set of all functions on a finite dimensional vector space V a special role play the
polynomial functions. By definition a polynomial fuction is an element of the subalgebra
(of the algebra of all functions with values in F ) generated by the linear functions.

If we choose a basis and consider the coordinate functions x1, x2, . . . , xn with respect to
the chosen basis, a polynomial function is a usual polynomial in the xi. If F is infinite,
the expression as a polynomial is unique and we can consider the xi as given variables.

The ring of polynomial functions on V will be denoted by P [V ] the ring of formal
polymomials by F [x1, x2, . . . , xn].

Choosing a basis we have always a surjective homomorphism F [x1, x2, . . . , xn] → P [V ]
which is an isomorphism if F is infinite.
Exercise If F is a finite field with q elements prove that P [V ] has dimension qn over
F , and that the kernel of the map F [x1, x2, . . . , xn] → P [V ] is the ideal generated by the
elements xq

i − xi.
Since the linear funtions are preserved under a given group action we have:

Proposition. Given a linear action of a group G on a vector space V , G acts on the
polynomial functions P [V ] by the rule (gf)(v) = f(g−1v) as a group of ring automorphisms.

Of course the full linear group acts on the polynomial functions. In the language of
coordinates we may view the action as linear changes of coordinates.

Exercise Show that we always have a linear action of GL(n, F ) on the formal poly-
nomial ring F [x1, x2, . . . , xn].

3.3 We assume the base field to be infinite for simplicity although the reader can see
easily what happens for finite fields. One trivial but important remark is that the group
action on P [V ] preserves the degree.

Recall that a function f is homogeneous of degree k if f(αv) = αkf(v) for all α′s and
v′s.

The set P [V ]q of homogeneous polynomials of degree q is a subspace, called in classical
language the space of quantics. If dim(V ) = n one speaks of n−ary quantics.

In general a direct sum of vector spaces U = ⊕∞
k=0Uk is called a graded vector space. A

subspace W of U is called homogeneous, if, setting Wi := W ∩Ui, we have W = ⊕∞
k=0Wk.

The space of polynomials is thus a graded vector space P [V ] = ⊕∞
k=0P [V ]k. One has

immediately (gf)(αv) = f(αg−1v) = αk(gf)(v) which has an important consequence:
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Theorem. If a polynomial f is an invariant (under some linear group action) then also
its homogeneous components are invariant.

Proof. Let f =
∑

fi be the decomposition of f in homogeneous components, gf =
∑

gfi

is the decomposition in homogeneous components of gf . If f is invariant f = gf and then
fi = gfi for each i since the decomposition into homogeneous components is unique.

In order to summarize the analysis done up to now let us also recall that an algebra A
is called a graded algebra if it is a graded vector space, A = ⊕∞

k=0Ak and, for all h, k we
have AhAk ⊂ Ah+k.

Proposition. The spaces P [V ]k are subrepresentations. The set P [V ]G of invariant poly-
nomials is a graded subalgebra.

3.4 To some extent the previous theorem may be viewed as a special case of the more
general setting of commuting actions.

Let thus be given two representations %i : G → GL(Vi), i = (1, 2), consider the linear
transformations between V1 and V2 which are G equivariant, it is clear that they form a
linear subspace of the space of all linear maps between V1 and V2.

The space of all linear maps will be denoted by hom(V1, V2) while the space of equivariant
maps will be denoted homG(V1, V2). In particular when the two spaces coincide we write
End(V ) or EndG(V ) instead of hom(V, V ) or homG(V, V ).

These spaces are in fact now algebras, under composition of operators. Choosing bases
we have that EndG(V ) is the set of all matrices which commute with all the matrices
coming from the group G.

Consider now the set of invertible elements of EndG(V ), i.e. the group H of all linear
operators which commute with G.

By the remarks of 3.3, H preserves the degrees of the polynomials and maps the algebra
of G invariant functions in itself thus:

Remark. H induces a group of automorphisms of the graded algebra P [V ]G.

We view this remark as a generalization of Proposition 3.3 since the group of scalar
multiplications commutes (by definition of linear transformation) with all linear operators.
Moreover it is easy to prove:
Exercise Given a graded vector space U = ⊕∞

k=0Uk define an action % of the multi-
plicative group F ∗ of F setting %(α)(v) := αkv if v ∈ Uk. Prove that a subspace is stable
under this action if and only if it is a graded subspace (F is assumed to be infinite).

4 Semisimple algebras.
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4.1 One of the main themes of our theory will be related to completely reducible
representations, it is thus important to establish these notions in full detail and generality.

Definition.

i) A set S of operators on a vector space U is irreducible or simple if the only subspaces of
U which are stable under S are 0 and U .

ii) A set S of operators on a vector space U is completely reducible or semisimple if U
decomposes as a direct sum of stable irreducible subspaces.

iii) A set S of operators on a vector space U is indecomposable if the space U cannot be
decomposed in the direct sum of two non trivial stable subspaces.

Of course a space is irreducible if and only if it is completely reducible and indecompos-
able.

A typical example of completely reducible sets of operators is the following. Let U = Cn

and S a set of matrices. For a matrix A denote by A∗ = A
t

its adjoint, it is characterized
by the fact that(Au, v) = (u, A∗v) for the standard Hermitian product

∑

ziwi.

Lemma. If a subspace M of Cn is stable under A then M⊥ (the orthogonal under the
Hermitian product) is stable under A∗.

Proof. If m ∈ M, u ∈ M⊥ we have (m, A∗u) = (Am, u) = 0 since M is A stable. Thus
A∗u ∈ M⊥.

Proposition. If S = S∗ then Cn is the orthogonal sum of irreducible submodules, in
particular it is semisimple.

Proof. Take an S stable subspace M of Cn of minimal dimension, it is then necessarily
irreducible.

Consider its orthogonal complement M⊥, by adjonction and the previous lemma we get
that M⊥ is S stable and Cn = M ⊕ M⊥.

We then procede in the same way on M⊥.

A special case is when S is a group of unitary operators.

More generally we say that S is unitarizable if there is an Hermitian product for which
the operators of S are unitary. If we consider a matrix mapping the standard basis of C

n

to a basis orthonormal for some given Hermitian product we see that

Lemma. A set of matrices is unitarizable if and only if it is conjugate to a set of unitary
matrices.

These ideas have an important consequence.

Theorem. A finite group G of linear operators on a finite dimensional complex space U
is unitarizable and hence the module is semisimple.
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Proof. We fix an arbirary positive Hermitian product (u, v) on U . Define a new Hermitian
product as:

(4.1.1) < u, v >:=
1

|G|
∑

g∈G

(gu, gv).

Then < hu, hv >=
∑

g∈G(ghu, ghv) =
∑

g∈G(gu, gv) =< u, v > and G is unitary for this

new product. If G was already unitary the new product coincides with the initial one.4

4.2 It is usually more convenient to use the language of modules since the irreducibil-
ity or complete reducibility of a space U under a set S of operators is clearly equivalent
to the same property under the subalgebra of operators generated by S.

Let us recall that, in 3.1, given a group G, one can form its group algebra F [G]. Every
linear representation of G extends by linearity to an F [G] module and conversely. A map
between F [G] modules is a (module) homomorphism if and only if it is G equivariant.
Thus from the point of view of representation theory it is equivalent to study the category
of G representations or that of F [G] modules.

We consider thus a ring R and its modules, using the same definitions for reducible,
irreducible modules. We define R∨ to be the set of (isomorphism classes) of irreducible
modules of R, the spectrum of R.

Given an irreducible module N we will say that it is of type α if α indicates its isomor-
phism class.

Given a set S of operators on U we set S ′ := {A ∈ End(U)|As = sA, ∀s ∈ S}, S ′

is called the centralizer of S, equivalently it should be thought as the set of all S linear
endomorphisms. One immediately verifies:

Proposition.

i) S′ is an algebra.

ii) S ⊂ S′′

iii) S′ = S′′′

The centralizer of the operators induced by R in a module M is also usually indicated
by EndR(M, M) or EndR(M) and called the endomorphism ring.

Any ring R can be considered as a module on itself by left multiplication (and as a
module on the opposite of R by right multiplication), this module is usually called the
regular representation; of course in this case a submodule is the same as a left ideal, an
irreducible submodule is also referred to as a minimal left ideal.

A trivial but useful fact on the regular representation is:

4The previous theorem has a far reaching generalization, by replacing the average given by the sum

with an integral.
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Proposition. The ring of endomorphisms of the regular representation is the opposite of
R acting by right multiplications.

Proof. Let f ∈ EndR(R) we have f(a) = f(a1) = af(1) by linearity, thus f is the right
multiplication by f(1).

Given two homomorphisms f, g we have fg(1) = f(g(1)) = g(1)f(1) and so the mapping
f → f(1) is an isomorphism between EndR(R) and R0.

One can generalize the previous considerations as follows: Let R be a ring.

Definiton. A cyclic module is a module generated by a single element.

A cyclic module should be thought as the linear analogue of a single orbit.

The structure of cyclic modules is quite simple, if M is generated by an element m we
have the map ϕ : R → M given by ϕ(r) = rm (analogue of the orbit map).

By hypothesis ϕ is surjective, its kernel is a left ideal J and so M is identified to R/J .

Thus a module is cyclic if and only if it is a quotient of the regular representation.

As done for groups in Chap.1, 3.1 given 2 cyclic modules R/J, R/I we can compute
HomR(R/J, R/I) as follows.

If f : R/J → R/I is a homomorphism and 1 ∈ R/J is the class of 1 we have f(1) = x, f :
r1 → rx for some x ∈ R. We must have then Jx = f(J1) = 0 hence Jx ⊂ I. Conversely
if Jx ⊂ I the map f : r1 → rx is a well defined homomorphism.

Thus if we define the set (I : J) := {x ∈ R|Jx ⊂ I}, we have

I ⊂ (I : J) := {x ∈ R|Jx ⊂ I}, HomR(R/J, R/I) = (I : J)/I

In particular for J = I we have the idealizer I(I) of I , I(I) := {x ∈ R|Ix ⊂ I}. The
idealizer is the maximal subring of R in which I is a two sided ideal, then I(I)/I is the
ring HomR(R/I, R/I) = EndR(R/I, R/I).

Exercise In a ring R consider an idempotent, e ∈ R, e2 = e. Set f := 1− e. We have
the decomposition:

R = eRe ⊕ eRf ⊕ fRe ⊕ fRf

which presents R as matrices:

R =

∣

∣

∣

∣

eRe eRf
fRe fRf

∣

∣

∣

∣

.

Prove that EndR(Re) = eRe.

Example Consider for A the full ring of n × n matrices over a field F . As a module
we take F n and in it the basis element e1.

Its annihilator is the left ideal I1 of matrices with the first column 0. In this case though
we have a more precise picture.

Let J1 denote the left ideal of matrices having 0 in all columns except the first. Then
Mn(F ) = J1 ⊕ I1 and the map a → ae1 restricted to J1 is an isomorphism of modules
between J1 and F n.
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In fact we can define in the same way Ji (the matrices with 0 outside the ith column).

Then Mn(F ) = ⊕n
i=1Ji is a direct sum of the algebra Mn(F ) into irreducible left ideals

all isomorphic, as modules, to the representation F n.5

Theorem. The regular representation of Mn(F ) is the direct sum of n copies of the stan-
dard module F n.

The example of matrices suggests the following:

Definition. We say that a ring R is semisimple if it is semisimple as a left module on
itself.

This definition is a priori not symmetric although it will be proved to be so from the
structure theorem of semisimple rings.

Remark Let us decompose a semisimple ring R as direct sum of irreducible left ideals,
since 1 generates R and it must be in a finite sum of the given sum we see:

Proposition. A semisimple ring is a direct sum of finitely many minimal left ideals.

Corollary. If F is a field6 then Mm(F ) is semisimple.

4.3 We wish to collect some examples of semisimple rings.

First of alll from the results in 4.1 and 4.2 we deduce:

Theorem. The group algebra C[G] of a finite group is semisimple.7

Next we have the obvious fact:

Proposition. The direct sum of two semisimple rings is semisimple.

In fact we let the following simple exercise to the reader.

Exercise To decompose a ring A in a direct sum of two rings is equivalent to give an
element e ∈ A such that:

e2 = e, ea = ae, ∀a ∈ A. e is called a central idempotent.

Having a central idempotent e, every A module M decomposes canonically as

eM ⊕ (1 − e)M.

Thus if A = A1 ⊕ A2 the module theory of A reduces to the one of A1, A2.

From the previous paragraph and these remarks we deduce:

5Remark The same proof, with small variations, applies with a division algebra D in place of F .
6also if it is a division ring
7Remark In fact it is not difficult to generalize to an arbitrary field. The general statement is:

The group algebra F [G] of a finite group over a field F is semisimple if and only if the characteristic of

F does not divide the order of G.
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Theorem. A ring A := ⊕iMni
(F ), F a field is semisimple.8

4.4 Our next task will be to show that also the converse to theorem 4.3 is true, i.e.
that every semisimple ring is a finite direct sum of rings of type Mm(D), D division ring.

We will limit the proof to finite dimensional algebras over C.For the moment we collect
one further remark, let us recall that:

Definition. A ring R is called simple if it does not possess any non trivial two sided
ideals.

Equivalently it is irreducible as a module over R ⊗ R0 under the left and right action
(a ⊗ b)r := arb.

This definition is slightly confusing since a simple ring is by no means semisimple, unless
it satisfies further properties (the d.c.c. on left ideals). A classical example of an infinite

dimensional simple algebra is the algebra of differential operators F < xi,
∂

∂xi
> (F a field

of characteristic 0).
We have:

Proposition. If D is a division ring Mm(D) is simple.

Proof. Let I be a non trivial two sided ideal, a ∈ I a non zero element. We write a as a
linear combination of elementary matrices a =

∑

aijeij , thus eiiaejj = aijeij and at least
one of these elements must be non zero. Multiplying it by a scalar matrix we can obtain an
element eij in the ideal I, then we have ehk = ehieijejk and we see that the ideal coincides
with the full ring of matrices.

Exercise The same argument shows more generally that for any ring A the ideals of
the ring Mm(A) are all of the form Mm(I) for I an ideal of A.

4.5 We start now with the general theory and with the following basic facts:

Theorem. (Schur’s lemma) The centralizer ∆ := EndR(M, M) of an irreducible module
M is a division algebra.

Proof. Let a : U → U be a non zero R linear endomorphism. Its kernel and image are
submodules of M . Since M is irreducible and a 6= 0 we must have Ker(a) = 0, Im(a) = M
hence a is an isomorphism and so it is invertible. This means that every non 0 element in
∆ is invertible, this is the definition of a division algebra.

This lemma has several variations, the same proof shows that:

Corollary. If a : M → N is a homomorphism between two irreducible modules then either
a = 0 or a is an isomorphism.

4.6 A particularly important case is when U is a finite dimensional vector space over
C, in this case since the only division algebras over C is C itself we have that:

8more generally a ring A := ⊕iMni
(Di), with the Di division algebras is semisimple.
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Theorem. Given an irreducible set S of operators on a finite dimensional space over C

then its centralizer S ′ is formed by the scalars C.

Proof. Rather than applying the structure theorem of finite dimensional dvision algebras
one can argue that, given an element x ∈ S ′ and an eigenvalue α of x the space of
eigenvectors of x for this eigenvalue is stable under S and so, by irreducibility, it is the
whole space hence x = α.

Remarks. 1. If the base field is the field of real numbers we have (according to the theorem
of Frobenius (cf. [ ])) 3 possibilities for ∆: R, C or H the algebra of quaternions.

2. It is not necessary to assume that U is finite dimensional, it is enough to assume that
it is of countable dimension.

In fact U is also a vector space over ∆ and so ∆, being isomorphic to a C (or R) subspace
of U is also countably dimensional.

This implies that every element of ∆ is algebraic over R. Otherwise ∆ would contain
a field isomorphic to the rational function field R(t) which is impossible, since this field
contains the uncountably many linearly independent elements 1

t−r
, r ∈ R.

Now one can prove that a division algebras over R in which every element is algebraic
is necessarily finite dimensional9 and thus the theorem of Frobenius applies.

In order to understand semisimple algebras from this point of view we make a general
remark about matrices.

Let M = M1 ⊕ M2 ⊕ M3 ⊕ . . .⊕ Mk be an R module decomposed in a direct sum.

For each i, j consider A(j, i) := homR(Mi, Mj). For 3 indices we have the composition
map A(k, j) × A(j, i) → A(k, i).

The groups A(j, i) together with the composition maps allow us to recover the full
endomorphism algebra of M as block matrices:

A = (aji), aji ∈ A(j, i).

(One can give a formal abstract construction starting from the associativity properties).
In more concrete form let ei ∈ End(M) be the projection on the summand Mi with

kernel ⊕j 6=iMj. The elements ei are a complete set of orthogonal idempotents in End(M)
i.e. they satisfy the properties

e2
i = ei, eiej = ejei = 0, i 6= j, and

k
∑

i=1

ei = 1.

When we have in a ring S such a set of idempotents we decompose S as

S = (

k
∑

i=1

ei)S(

k
∑

i=1

ei) = ⊕i,jeiSej .

9this depends on the fact that every element algebraic over R satisfies a quadratic polynomial.
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This sum is direct by the orthogonality of the idempotents.

We have eiSejejSek ⊂ eiSek, eiSejehSek = 0, j 6= h. In our case S = EndR(M) and
eiSej = homR(Mj, Mi).

In particular assume that the Mi are all isomorphic to a module N and let A := EndR(N)
then:

EndR(N⊕k) = Mk(A).

Assume now we have two modules N, P such that homR(N, P ) = homR(P, N) = 0, let
A := EndR(N), B := EndR(P ) then:

EndR(N⊕k ⊕ P⊕h) = Mk(A) ⊕ Mh(B).

Clearly we have a similar statement for several modules.

We can add together all these remarks in the case in which a module is a finite direct
sum of irreducibles.

Assume N1, N2, . . . , Nk are the distinct irreducible which appear with multiplicities
h1, h2, . . . , hk, let Di = EndR(Ni) (a division ring) then:

(4.6.1) EndR(⊕k
i=1N

hi

i ) = ⊕k
i=1Mhi

(Di).

4.7 We are now ready to characterize semisimple rings. If R is semisimple we have
that R = ⊕k

i=1N
mi

i as in the previous section as a left R module, then:

R0 = EndR(R) = ⊕i∈IN
mi

i = ⊕i∈IMmi
(∆i).

We deduce that R = R00 = ⊕i∈IMmi
(∆i)

0.

The opposite of the matrix ring over a ring A is the matrices over the opposite ring (use
transposition) and so we deduce finally:

Theorem. A semisimple ring is isomorphic to the direct sum of matrix rings Ri over
division algebras.

Some comments are in order.

1. We have seen that the various blocks of this sum are simple rings, they are thus
distinct irreducible representations of the ring R ⊗ R0 acting by the left and right action.

We deduce that the matrix blocks are minimal 2 sided ideals. From the theory of isotypic
components which we will discuss it follows that the only ideals of R are direct sums of
these minimal ideals.

2. We have now the left right symmetry, if R is semisimple so is also R0.

Since any irreducible module N is cyclic there is a surjective map R → N . This map
restricted to one of the Ni must be non zero hence:

Corollary. Each irreducible R module is isomorphic to one of the Ni (appearing in the
regular representation).
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§1 Characters.

2.1 We want to deduce some of the basic theory of characters of finite groups with some
comments to compact groups.

Definition. Given a linear representation ρ : G → GL(V ) of a group G, where V is a
finite dimensional vector space over a field F we define its character to be the following
function on G.

χρ(g) := tr(ρ(g)).

Here tr is the usual trace.

We say that a character is irreducible if it comes from an irreducible representation.

Some properties are immediate.

Proposition. 1) χρ(g) = χρ(aga−1), ∀a, g ∈ G.

This means that the character is constant on conjugacy classes, such a function is called
a class function.

2) Given two representations ρ1, ρ2 we have:

χρ1⊕ρ2
= χρ1

+ χρ2
, χρ1⊗ρ2

= χρ1
χρ2

,

3) Furthermore if ρ is unitarizable we have that the character of the dual representation
ρ∗ is the conjugate of χρ:

ρ∗ = ρ.

Proof. Let us show 3) since the others are clear. If ρ is unitarizable there is a basis in which
the matrices ρ(g) are unitary, hence in the dual representation we obtain the conjugate

matrix which is equal to the inverse transposed and tr(ρ∗(g)) = tr(ρ(g)) = tr(ρ(g)).

4.8 To understand the deeper properties of characters we state the following for finite
groups.

Proposition. Let ρ : G → GL(V ) be a complex finite dimensional representation of a
finite group G, then:

dimCV G =
1

|G|
∑

χρ(g).

Proof. Let us consider the operator π := 1
|G|

∑

ρ(g), we claim that it is the projection

operator on V G. In fact if v ∈ V G:

π(v) =
1

|G|
∑

ρ(g)(v) =
1

|G|
∑

v = v.
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Otherwise:

ρ(h)π(v) =
1

|G|
∑

ρ(h)ρ(g)v =
1

|G|
∑

ρ(hg)v = π(v).

Then dimCV G = tr(π) = tr( 1
|G|

∑

ρ(g)) = 1
|G|

∑

tr(ρ(g)) = 1
|G|

∑

χρ(g) by linearity of

the Trace.

The previous proposition has an important consequence.

Theorem (Orthogonality of characters). Let χ1, χ2 be the characters of two irre-
ducible representations ρ1, ρ2 then:

1

|G|
∑

χ1(g)χ2(g) =

{

0 if ρ1 6= ρ2

1 if ρ1 = ρ2

.

Proof. Let V1, V2 the the spaces of the two representations consider hom(V2, V1) = V1⊗V ∗
2 .

As representation it has character χ1(g)χ2(g) from 2.1.

We have seen that homG(V2, V1) = (V1 ⊗ V ∗
2 )G hence

dimChomG(V2, V1) =
1

|G|
∑

χ1(g)χ2(g)

from the previous proposition.

Finally by Schur’s lemma and the fact that V1, V2 are irreducible, it follows the theorem.

In fact a more precise theorem holds. Let us consider the Hilbert space C[G] of functions
on G, the Hilbert scalar product being for two functions a, b on G:

(a, b) :=
1

|G|
∑

g∈G

a(g)b(g).

inside we consider the subspace Cc(G) of class functions then.

Theorem. The irreducible characters are an orthonormal basis of Cc(G).

For a finite group G decompose the group algebra in matrix blocks according to 1.8 as
C[G] = ⊕m

i Mhi
(C).

The m blocks correspond to the m irreducible representations and the m irreducible
characters are the composition of the projection to a factor Mhi

(C) followed by the
ordinary trace.

A function f =
∑

g∈G f(g)g ∈ C[G] is a class function if and only if f(ga) = f(ag) for
all a, g ∈ G. This means that f lies in the center of the group algebra.

The space of class functions is identified to the center of C[G].

The center of a matrix algebra Mh(C) is formed by the scalar matrices thus the center
of ⊕m

i Mhi
(C) equals C⊕m.

It follows that the number of irreducible characters equals the dimension of the space of
class functions. Since the irreducible characters are orthonormal they are a basis.

As corollary we have:
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Corollary. The number of irreducible representations of a finite group G equals the num-
ber of conjugacy classes in G.

If h1, . . . , hr are the dimensions of the distinct irreducible representations of G we have
|G| =

∑

i h2
i .

There is a deeper result on the dimensions of irreducible representations (see. ):

Theorem. The dimension h of an irreducible representations of a finite group G divides
the order of G.

The previous informations allow us to compute a priori the dimensions hi in some simple
cases but in general are only a small piece of information.

Example-exercise. Let us consider again the action of a finite group G by permutations
on G itseld by left multiplication. The corresponding permutation representation is C[G]
the group algebra. Its character is the regular character and it is easily computed, an
element g permutes the basis elements without fixed points if it is different from 1 thus its
trace is 0 while tr(1) = |G|.

Let us denote by χr this regular character. By taking the scalar product of the regular
character with an irreducible character χ1, of some irreducible module N we have:

1

|G|
∑

g∈G

χr(g)χ1(g) = χ1(1) = dim N

we thus recover the fact that each irreducible module appears in the regular representation
with multiplicity equal to its dimension.

4.9 We make now a computation on induced characters which will be useful when
we discuss the symmetric group.

Let G be a finite group H a subgroup and V a representation of H we want to compute
the character χ of IndG

H(V ) = ⊕x∈G/HxV . An element g ∈ G induces a transformation
on ⊕x∈G/HxV which can be thought of as a matrix in block form. Its trace comes only
from the contributions of the blocks xV for which gxV = xV . The character χ(g), is thus
a sum of contributions from the fixed points (G/H)g of g on G/H, i.e. the cosets xH such
that gxH = xH or x−1gx ∈ H.

If gxV = xV the map g on xV has the same trace as the map x−1gx on V thus:

χ(g) =
∑

(G/H)g

χV (x−1gx)

It is useful to transform the previous formula, gxH = xH if and only if x−1gx ∈ H, so
let X := {x ∈ G|x−1gx ∈ H}.

The set X is a union of right cosets G(g)x where G(g) is the centralizer of g in G and
the map x → x−1gx is a bijection between the set of such cosets and the intersection of
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the conjugacy class Cg of g with H. Decompose then Cg ∩ H = ∪iOi into H conjugacy
classes, fix an element gi ∈ Oi in each class and let H(gi) be the centralizer of gi in H,
then |Oi| = |H|/|H(gi)| and finally.

(4.9.1) χ(g) =
1

|H|
∑

x∈X

χV (x−1gx) =
1

|H|
∑

i

∑

a∈Oi

|G(a)|χV (a) =
∑

i

|G(g)|
|H(gi)|

χV (gi).

In particular one can apply this to the case V = 1 so that we have the permutation
representation of G on G/H.

Proposition. The number of fixed points of g on G/H equals the character of the permu-
tation representation and is:

(4.9.2) χ(g) =
|Cg ∩ H||G(g)|

|H| =
∑

i

|G(g)|
|H(gi)|

.

5 Induction and restriction.

5.1 We collect now some general facts about representations of groups.

First of all let H be a group, φ : H → H an automorphism and ρ : G → GL(V ) a linear
representation.

Composing with φ we get a new representation V φ given by G
φ−→ G

ρ−→ GL(V ), it is
immediately verified that, if φ is an inner automorphism V φ is equivalent to φ.

Let now H ⊂ G be a normal subgroup, every element g ∈ G induces by inner conjugation
in G an automorphism φg of H.

Given a representation M of G and an H submodule N ⊂ M we clearly have that
gN ⊂ M is again an H submodule and canonically isomorphic to Nφg , it depends only on
the coset gH of G.

In particular assume that, M is irreducible as G module and N is irreducible as H
module, then all the submodules gN are irreducible H modules and

∑

g∈G/H gN is a G

submodule hence
∑

g∈G/H gN = M .

We want in particular apply this when H has index 2 in G = H ∪uH, we shall then use
the canonical sign representation ε of Z/(2) = G/H.

Theorem. 1) Given an irreducible representation N of H it extends to a representation
of G if and only if N is isomorphic to Nφu , in this case it extends in two ways up to the
sign representation.

2) An irreducible representation M of G restricted to H either remains irreducible or
splits into 2 irreducible representations N ⊕ Nφu according to wether M is not or is iso-
morphic to M ⊗ ε.
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Proof. Let h0 = u2 ∈ H. If N is also a G representation the map u : N → N is an
isomorphism with Nφu , conversely let t : N → N = Nφu be an isomorphism so that
tht−1 = φu(h), then t2ht−2 = h0hh−1

0 .

Since N is irreducible we must have h−1
0 t2 = λ is a scalar.

We can substitute t with t
√

λ
−1

and can thus assume that t2 = h0 (on N).

It follows that mapping u → t one has the required extension of the representation
it also is clear that the choice −t is the other possible choice changing the sign of the
representation.

2) From our previous discussion if N ⊂ M is an irreducible H submodule then M =
N + Nφu and we clearly have two cases M = N or M = N ⊕ Nφu .

In the first case tensoring by the sign representation changes the representation while
in the second we can represent M as the set N ⊕ N of pairs (n1, n2) over which H acts
diagonally while u(n1, n2) := (h0n2, n1).

Similarly M⊗ε is N⊕N of pairs (n1, n2) over which H acts diagonally while u(n1, n2) :=
−(h0n2, n1).

Then it is immediately seen that the map (n1, n2) → (n1,−n2) is an isomorphism of the
two structures. �

One should compare this property of the possible splitting of irreducible representations
with the similar feature for conjugacy classes.

With the same notations as before.

Exercise. Given a conjugacy class C of G contained in H it is either a unique conjugacy
class in H or it splits into 2 conjugacy classes permuted by exterior conjugation by u.
The second case occurs if and only if the stabilizer of an element in the conjugacy class is
contained in H.

5.2 Let now G be a group H a subgroup and N a representation of H (over some
field k).

One considers k[G] as a rigth k[H] module and forms k[G]⊗k[H] N which is a represen-
tation under G by the left action of G on k[G].

Definition. k[G] ⊗k[H] N is called the representation induced from N from H to G, it is

also denoted by IndG
HN .

Exercise. If G ⊃ H ⊃ K are groups and N is a K module we have

IndG
H(IndH

KN)) = IndG
KN

The representation IndG
HN is in a natural way described by ⊕g∈G/HgN where by

g ∈ G/H we mean that g runs over a choice of representatives of cosets. The action of G
on such a sum is easily described.
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There is a similar construction by forming homk[H](k[G], N) where now k[G] is consid-
ered as a left k[H] module by the right action and homk[H](k[G], N) is a representation
under G by the action of G deduced from the left action on k[G].

homk[H](k[G], N) := {f : G → N | f(gh) = hf(g)}, (gf)(k) := f(g−1k).

If G is a finite group one has a G×G isomorphism between k[G] and its dual (3.1) and
we obtain an isomorphism

k[G] ⊗k[H] N = k[G]∗ ⊗k[H] N = homk[H](k[G], N)

for algebraic groups and rational representations it is better to take the point of view of
the representation homk[H](k[G], N).

If H is a closed subgroup of G one can define homk[H](k[G], N) as the set of regular
maps G → N which are H− equivariant.

The regular maps from an affine algebraic variety V to a vector space U can be identified
to A(V )⊗U where A(V ) is the ring of regular functions on V hence if V has an action under
an algebraic group H and U is a rational representation f H the space of H equivariant
maps V → U is identified to the space of invariants (A(V ) ⊗ U)H .

Assume now that G is linearly reductive and let us invoke the decomposition 1.2.1.
k[G] = ⊕iU

∗
i ⊗ Ui hence

homk[H](k[G], N) = (k[G] ⊗ N)H = ⊕iU
∗
i ⊗ (Ui ⊗ N)H

finally in order to compute (Ui ⊗ N)H remark that (Ui ⊗ N)H = homH(U∗
i , N).

Assume then that N is irreducible and that H is also linearly reductive, it follows from
Schur’s Lemma that the dimension of the space homH(U∗

i , N) equals the multiplicity of
N in the representation U∗

i . We deduce thus

Theorem Frobenius reciprocity. The multilicity with which an irreducible representa-
tion V of G appears in homk[H](k[G], N) equals the multiplicity with which N appears in
V as representation of H.


