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CHAPTER 2

Partitions

Start with n unlabeled objects and partition them (break them into subsets) into non-empty
subsets. Since the objects are indistinguishable from each other, a partition is specified
by the sizes of the non-empty subsets and we can list these sizes in weakly decreasing
order. An object of this type is called a partition of n and we will represent this as a
sequence λ = (λ1, λ2, . . . , λk) with λi representing the number of objects in the ith subset
and λ1 ≥ λ2 ≥ · · · ≥ λk > 0 where k is the number of non-empty subsets of the partition.
We denote ‘λ is a partition of n’ by λ ` n. k is known as the length of the partition and we
will denote it by `(λ) := k. By defintion, we have λ1 +λ2 + · · ·+λ`(λ) = n and we will adopt
the convention that for any i > `(λ), λi = 0 so that

∑
i≥1 λi = n.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

For each partition we will associate a subset of the points in the first quadrant of the cartesian
lattice, D(λ) = {(i, j) : 0 ≤ i < λj+1, j ≥ 0}. The cardinality of this set is |D(λ)| = n and
we will represent D(λ) by drawing a diagram in the coordinate plane with a square for each
(i, j) ∈ D(λ) with the bottom left hand corner of the square at the coordinate (i, j). A set
of cells S corresponds to a partition if and only if (i, j) ∈ S implies that (i′, j′) ∈ S for all
0 ≤ i′ ≤ i and 0 ≤ j′ ≤ j.

Example 1. Let λ = (6, 5, 3, 3, 2, 2, 1) which is a partition of 22 and D(λ) is represented by
the following diagram

.

Let ni(λ) be the number of j ≤ `(λ) such that λj ≥ i and set λ′ = (n1(λ), n2(λ), . . . , nλ1(λ)).
Since ni(λ) ≥ ni+1(λ), λ′ is also a partition and we refer to it as the conjugate partition to
λ.

Exercise 1. Show that (i, j) ∈ D(λ) if and only if (j, i) ∈ D(λ′) and conclude the diagram
associated to D(λ′) is exactly the diagram for D(λ) flipped about the line x = y.

Example 2. As in the previous example λ = (6, 5, 3, 3, 2, 2, 1), then we can easily calculate
each of the ni(λ) and determine λ′ = (7, 6, 4, 2, 2, 1). D(λ′) is represented by the diagram

.
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From this point forward we will identify λ and D(λ) in abuse of notation. This will appear
in our formulas as expressions like λ ⊆ µ (or the language λ is contained in µ) to mean
D(λ) ⊆ D(µ) or s ∈ λ in place of s ∈ D(λ). We shall also try to develop notation which is
consistent with this identification, for instance the size of the partition λ will be |λ| which
represents |D(λ)|.

The union of two partitions λ ∪ µ is another abuse of notation which will represent the
partition whose diagram contains D(λ) ∪ D(µ). Intuitively λ ∪ µ is the smallest par-
tition which contains both the partition λ and the partition µ. An equivalent defini-
tion will be the weakly increasing sequence (max(λ1, µ1), max(λ2, µ2), . . . ,max(λm, µm))
with m = max(`(λ), `(µ)). Similarly λ ∩ µ will be the partition which is contained in
both the partition λ and the partition µ (that is, D(λ ∩ µ) = D(λ) ∩ D(µ)) so that
λ ∩ µ = (min(λ1, µ1), min(λ2, µ2), . . . ,min(λm, µm)).

We will sometime need to consider the partition λ ] µ which will be the sequence

(λ1, λ2, . . . , λ`(λ), µ1, µ2, . . . , µ`(µ))

rearranged so that the entries are in decreasing order. The complementary operation to
] will be the λ 	 µ where if there is a subset S = {s1 < s2 < . . . < s`(λ)} such that
(λs1 , λs2 , . . . , λs`(λ)

) = µ then λ 	 µ is the ordered sequence of parts (λi : i /∈ S). These

operations are complementary in the sense that λ ] µ = ν if and only if λ = ν 	 µ (and by
symmetry µ = ν 	 λ). We will have that |λ ] µ| = |λ|+ |µ| and `(λ ] µ) = `(λ) + `(µ).

Example 3. Let λ = (5, 5, 4, 2, 2, 1) and µ = (5, 2, 2) then λ	µ = (5, 4, 1) and λ = µ](λ	µ).
In pictures this is represented as

	 =

and

= ] .

Exercise 2. Prove: ∣∣∣∣∣⋃
µ`n

µ

∣∣∣∣∣ =
n∑

k=1

d(k)

where d(k) is the number of divisors of the number k. For example, we have

are the first nine partitions
⋃

µ`n µ and
∑n

k=1 d(k) takes on the values 1, 3, 5, 8, 10, 14, . . ..

Exercise 3. Show that (λ ] µ)′ = (λ′1 + µ′
1, λ

′
2 + µ′

2, . . . , λ
′
r + µ′

r) with r = max(`(λ), `(µ)).

Let mi(λ) = ni(λ)− ni−1(λ) (with the convention that n0(λ) = 0) so that mi(λ) represents
the number of parts of size λ which are exactly equal to i. Another way of representing
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the partition λ will be by specifying the number of parts of each size i (that is we indicate
the values of mi(λ) for each i). This will be done with the notation λ = (kmk(λ), (k −
1)mk−1(λ), . . . , 2m2(λ), 1m1(λ)) for the value k = λ1.

There are several statistics which are associated to a given partition. If λ is a partition
then we define zλ := 1m1(λ)m1(λ)!2m2(λ)m2(λ)!3m3(λ)m3(λ)! · · · . This statistic is of interest
because |λ|!/zλ is the number of permutations of |λ| that have cycle type λ.

We also will denote n(λ) =
∑

i≥1(i − 1)λi which is something of a measure of how tall a
partition is since a single row partition will have n((k)) = 0 and a single columned partition
will have n((1k)) =

(
k
2

)
. This statistic often appears naturally when considering weighted

sums of partitions. For instance, the generating function for the number of partitions of size
n is

∏
i≥1

1
1−xi and to look for a q-analog of this expression we might consider the generating

function

(2.1)
∏
i≥1

1

1− qxi
=
∑
n≥0

∑
λ`n

qn(λ)x|λ|.

If µ ⊆ λ, then the symbol λ/µ will represent the collection of cells D(λ)−D(µ) (where the
operation − means the difference of sets). λ/µ is called a skew partition. Unless otherwise
specified when a skew partition λ/µ is indicated in a formula, it is automatically assumed
that µ ⊆ λ.

If λ/µ has at most one cell per column then we will say that it is a horizontal strip and indicate
this by the notation λ/µ ∈ H. This condition can also be expressed by the inequalities
λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ λ3 ≥ · · · .

If λ/µ has at most one cell per column then it will be called a vertical strip (and indicated
by λ/µ ∈ V). λ/µ ∈ V if and only if λi ≥ µi ≥ λi − 1 for all i ≥ 1. Furthermore if
λ/µ ∈ H (respectively λ/µ ∈ V) and |λ/µ| = k then we will use the notation λ/µ ∈ Hk

(resp. λ/µ ∈ Vk).

Example 4. Let λ = (6, 4, 4, 2, 1) and µ = (4, 4, 3, 2) are represented by the following
diagrams

.

Then the skew diagram λ/µ is a horizontal strip and it is represented by the cells which are
colored in the diagram below

λ′ = (5, 4, 3, 3, 1, 1) and µ′ = (4, 4, 3, 2) and λ′/µ′ is a vertical strip and the diagram consists
of the cells which are colored in the diagram

.
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There are several ways of ordering the set of partitions. The first is to consider one partition
µ is smaller than another λ if D(µ) ⊆ D(λ). We will denote this as an abuse of notation by
µ ⊆ λ. Note that µ ⊆ λ if and only if λi ≤ µi for all i. This is a partial order on the set of
partitions in that it possible that both µ * λ and λ * µ.

Example 5. We list the partitions which are size less than or equal to 6 and place a line
between two partitions if the smaller is less than the larger in containment order. This
partial order defines a lattice structure on the set of partitions.

Exercise 4. Prove that |{µ : µ ⊆ λ}| = |{i : mi(λ) > 0}| = |{µ : µ ⊇ λ}| − 1

Another way of ordering the partitions is to compare the entries lexicographically, that is
if λ, µ are partitions then λ <lex µ if either λ1 < µ1 or λ1 = µ1 and (λ2, λ3, . . . , λ`(λ)) <lex

(µ2, µ3, . . . , µ`(µ)). This is a total order on partitions but it is possible that |λ| > |µ| and
λ <lex µ. Although this is a perfectly natural order on the set of partitions it does not seem
to be the one that arises most naturally in the algebra structures that we will study. This
and similar orders (such as degree lex or reverse lex) are ones that we might use for studying
ideals in a polynomial ring. For the time being this structure is not as important as the
third order which we will define.

The last order we will consider is also a partial order on partitions which arises naturally
from the algebra structure that we will be looking at. This order will be denoted by < and
we will say that λ ≤ µ if and only if

∑i
j=1 λj ≤

∑i
j=1 µj for all i ≥ 1. This partial order is

a total order on partitions of size strictly less than 6. At n = 6 both the pair (4, 1, 1) and
(3, 3) and the pair (3, 1, 1, 1) and (2, 2, 2) are not comparable with respect to this order.
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Example 6. Below we show the poset of partitions of size 3, 4, 5, 6 and 7. Notice that for
partitions of 3, 4 and 5 this is a linear order but for the partitions of size 6 and 7 it is not
since for example (2, 2, 2) and (3, 1, 1, 1) are not comparable in this order.

An intuitive definition of the statement µ ≤ λ is that the diagram for µ is narrower and
taller than λ. We also clearly have for µ ≤ λ then µ ≤lex λ. The converse of this statement
is not true.

Exercise 5. Prove that λ ≤ µ if an only if µ′ ≤ λ′.

For any n, let p(n) represent the number of partitions of n. 1
1−qk =

∑
r≥0 qrk is a generating

function for the partitions which only contain parts of size k (that is, there is a rectangular
partition at of size n consisting of parts of size only k if and only if n = rk for some integer
r). Since in a partition the parts may be chosen independently, the generating function for
the sequence p(n) is the product of the generating functions 1

1−qi for all i, that is

(2.2)
∑
n≥0

qnp(n) =
∏
i≥1

1

1− qi
.

We can use this generating function formula to give the first few values of p(n).∑
n≥0

qnp(n) = 1 + q + 2 q2 + 3 q3 + 5 q4 + 7 q5 + 11 q6 + 15 q7

+ 22 q8 + 30 q9 + 42 q10 + 56 q11 + 77 q12 + · · ·

Despite the fact that we can use the generating function to calculate the number of partitions,
it does not really seem to be a very satisfying formula because in order to use it we potentially
need to consider expanding the product of n terms in order to calculate the value of p(n).

A remarkable fact was noticed by Leonhard Euler in 17** that we will exploit to find a
recurrence on the number of partitions of n. He calculated the first several terms of the
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product
∏

i≥1(1 − qi) and noticed that the coefficient was always equal to ±1 or 0. In fact
he was quite easily able to guess a formula for this denominator and several years later was
able to prove it. We will take advantage of its existence to derive a method of calculating
the number of partitions of size n.

Proposition 2.1. (Euler’s pentagonal number theorem)

(2.3)
∏
i≥1

1− qi = 1 +
∑
m≥1

(−1)m
(
q

m(3m−1)
2 + q

m(3m+1)
2

)

There is a clever proof of this proposition that comes from one of the first American mathe-
maticians F. Franklin [5]. The proof uses a technique which is fairly ubiquitous in algebraic
combinatorics, to show that terms in a sum cancel associate a combinatorial object to each
term in the sum and then show that they cancel by producing a map which sends an element
with positive weight to a term with negative weight.

There are several other accounts of this proof: [2], [7], [8], [10].

We will need to talk about partitions as a combinatorial object. λ is a partition if it is a
sequence λ = (λ1, λ2, . . . , λ`(λ)) with λ1 ≥ λ2 ≥ . . . λ`(λ) where we use the notation `(λ) to
represent the number of parts of λ. The symbol |λ| will represent the size of the partition
so that |λ| = λ1 + λ2 + · · ·+ λ`(λ). λ is a strict partition if in addition λ1 > λ2 > · · ·λ`(λ).

There is a way of graphically representing a partition with rows of boxes. A partition
λ = (λ1, λ2, . . . , λ`(λ)) is represented by a row of λ1 boxes below a row of λ2 boxes below
a row of λ3 boxes etc. Each of these rows of cells will be left justified. For example the
partition (4, 4, 3, 1, 1) is represented by the following diagram:

Example 7. We note that the left hand side of this equation is the generating function for
all strict partitions (partitions where all parts are distinct) weighted with (−1)`(λ)q|λ|. That
is,

(2.4)
∏
i≥1

1− qi =
∑

λ strict

(−1)`(λ)q|λ|

This follows by observing that to determine the coefficient of qn by expansion of the product
on the left we have a contribution of (−1)kqλ1+λ2+···+λk for every sequence (λ1, λ2, . . . , λk)
such that λi > λi+1 for 1 ≤ i < k. Below we expand the terms of this generating function
through degree 8. For example, a term of the form (−q4)(−q2) is represented by the picture

and we record the weight of +q6 just below the picture.

·
1 −q −q2 +q3 −q3 +q4 −q4 +q5 +q5 −q5 −q6 +q6



2. PARTITIONS 11

+q6 −q6 −q7 +q7 +q7 +q7 −q7 −q8

· · ·
−q8 +q8 +q8 +q8 −q8 + · · ·

Now we notice that all of the terms cancel except for the ones stated in the theorem, that is
we have ∏

i≥1

1− qi = 1− q − q2 + q5 + q7 + · · ·

In fact, we will show that one way of looking at this expression is to observe terms which
survive are those that correspond to the following pictures:

·∏
i≥1 1− qi = 1 −q −q2 +q5 +q7 −q12 −q15

· · ·
+q22 +q26 −q35 −q40 · · ·

From the image in this example one might think that the theorem would be better named the
trapazoidal number theorem. There is a reason that the numbers m(3m− 1)/2 are referred
to as pentagonal numbers and if m → −m then the pentagonal number is transformed to
→ −m(−3m−1)/2 = m(3m+1)/2. Observe the picture below how a sequence of pentagons
have exactly m(3m− 1)/2 points in them (and this continues for m > 4).

Proof. To show that this proposition holds we show that there is an involution φ on
the strict partitions λ of n such that φ(λ) is also a partition of n and the length of φ(λ)
will have length either one smaller or one larger than that of λ. This means that if the
weight of a strict partition is (−1)`(λ)q|λ| then the weight of φ(λ) is −(−1)`(λ)q|λ| and so this
term corresponding to φ(λ) will cancel with the term corresponding to λ. This involution
will fail to ‘work’ for the partitions of the form (2m − 1, 2m − 2, . . . ,m) which are of size

2m2− (m+1)m
2

= m(3m−1)
2

and (2m, 2m−1, . . . ,m+1) which are of size 2m2− (m−1)m
2

= m(3m+1)
2

.
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For a strict partition λ we will let r equal to the smallest part of λ (r = λ`(λ)) and let s equal
the number of parts which are consecutive at the beginning of the partition. In other words
s is the largest integer such that (λ1, λ2, . . . , λs) = (λ1, λ1 − 1, . . . , λ1 − s + 1).

If s 6= `(λ) and r > s then we will let φ(λ) equal the partition (λ1 − 1, λ2 − 1, . . . , λs −
1, λs+1, . . . , λ`(λ), s). That is, if the diagram for the partition looks something like the fol-
lowing where there is an × in each of the cells corresponding to r and a dot in the cells
corresponding to s

××××
· · ·

then φ(λ) will be the partition with the diagonal of s cells filled with a dot moved to the top
row of the partition.

· · ·××××

φ(λ) is still a strict partition and it has the property that the longest string of consecutive
parts at the beginning of the partition is greater than or equal to s.

If s 6= `(λ) and r ≤ s then we will let φ(λ) equal to the partition (λ1 + 1, λ2 + 1, . . . , λr +
1, λr+1, . . . , λ`(λ)). For example, if our diagram is similar to the one below with the cells
marked with an × representing the row of size r and those marked with the · represent the
cells which correspond to the s consecutive parts at the beginning of the partition.

×××
· · · ·

The partition corresponding to φ(λ) is then represented by the following picture.

· ·×·×·×

Notice that it is also possible that s = `(λ) and we consider this case separately because we
need that r is at least 2 more cells than s does before we can move the s cells to the top row.
In this case if r > s + 1 then we will remove the s cells along the diagonal and turn them
into the shortest row so that φ(λ) = (λ1 − 1, λ2 − 1, . . . , λs − 1, s). For example we have the
picture on the left will be transformed to the one on the right.

×××××•· ·
· · ·×××××

λ φ(λ)

If s = `(λ) and r < s then it is still possible to move the shortest row of λ to the first r
rows. We will set φ(λ) = (λ1 + 1, λ2 + 1, . . . , λr + 1, λr, . . . , λ`(λ)−1), this corresponds to the
case when we have a partition of the form of the one below.
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××•· · · · ·
· · ·×·×·×

λ φ(λ)

If we describe what is happening to the diagram the map φ does one of two things, either it
removes the smallest row of r = λ`(λ) cells of the partition and places one cell more in each
of the first r rows (in the case that r < s or r = s and s < `(λ)) or it removes one cell from
each of the first s rows and adds a row of size s to the top of the diagram (in the case that
r > s + 1 or r = s + 1 and s < `(λ)).

Observe that if the weight of λ is (−1)`(λ) then since φ(λ) has the same number of cells and
either one more or one less row than λ then the weight of φ(λ) is the negative of the weight
of λ.

Also observe for each of the 4 cases we have considered, φ(φ(λ)) is just λ. This implies we
can say that in the expansion of the expression

∑
λ strict(−1)`(λ)q|λ|, the term corresponding

to the partition λ will cancel with the term corresponding to the partition φ(λ) because the
then φ(λ) will also cancel with φ(φ(λ)) = λ.

There are two cases that we have not considered. These terms do not cancel. One is that
r = s and s = `(λ) and so we have a partition of the form (2m−1, 2m−2, . . . ,m) and the other
is that r = s+1 and s = `(λ) and this is a partition of the form (2m, 2m−1, . . . ,m+1). �

We encourage the reader to take a pencil and draw an arrow between the diagrams of the
strict partitions given in the example above to show that the involution works as expected.

What this implies is that we can derive a recurrence which will allow us to calculate the
number of partitions of n. Notice if we multiply the formula of Euler and the generating
function for the number of partitions together we get 1.

(2.5) 1 =
∏
i≥1

1

1− qi

∏
i≥1

(1− qi) =

(∑
n≥0

p(n)qn

)(
1 +

∑
m≥1

(−1)m
(
q

m(3m−1)
2 + q

m(3m+1)
2

))

Now take the coefficient of qn in both sides of this equation. For n > 0 we see that

(2.6) 0 = p(n) +
∑
m≥1

(−1)m (p (n−m(3m− 1)/2) + p (n−m(3m + 1)/2))

where we are assuming here that p(k) = 0 if k is a negative number. By isolating p(n) by
itself we have the following recurrence.

Corollary 2.2. p(n) = 0 for n < 0, p(0) = 1 and for n > 0 we have

p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + p(n− 12) + p(n− 15) + · · ·
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Example 8.

p(1) = p(0) = 1

p(2) = p(1) + p(0) = 2

p(3) = p(2) + p(1) = 3

p(4) = p(3) + p(2) = 5

p(5) = p(4) + p(3)− p(0) = 7

p(6) = p(5) + p(4)− p(1) = 11

p(7) = p(6) + p(5)− p(2)− p(0) = 15

p(8) = p(7) + p(6)− p(3)− p(1) = 22

p(9) = p(8) + p(7)− p(4)− p(2) = 30

p(10) = p(9) + p(8)− p(5)− p(3) = 42

p(11) = p(10) + p(9)− p(6)− p(4) = 56

p(12) = p(11) + p(10)− p(7)− p(5) + p(0) = 77

and this agrees with the generating function formula which we computed in an earlier exam-
ple. This formulation is easier for implementing in an algorithm than the generating function
formula.

It will be useful to consider the generating function for all partitions which fit inside of an
n × k rectangle. This generating function Cq(n, k) =

∑
λ⊆(nk) q|λ| must be finite and hence

is a polynomial in q.

Every partition which fits inside of this n× k rectangle will have the property that either λ
has a part of size n or it does not. If λ has a part of size n then λ− (n) is a partition which
fits inside of an n × (k − 1) rectangle. In terms of the generating functions, this translates
to the following recursion:

(2.7) Cq(n, k) =
∑

λ⊆(nk)
λ1=n

q|λ| +
∑

λ⊆(nk)
λ1 6=n

q|λ| = qnCq(n, k − 1) + Cq(n− 1, k).

Since the generating function for the partitions which fit inside of an n × k rectangle is
the same as the generating function which fit inside of a k × n rectangle, it follows that
Cq(n, k) = Cq(k, n) and hence using equation (2.7) we also have

(2.8) Cq(n, k) = qkCq(n− 1, k) + Cq(n, k − 1).

Now set [n]q = 1−qn

1−q
=
∑n

i=1 qi−1 and [n]q! = [n]q[n− 1]q · · · [1]q = 1
(1−q)n

∏n
i=1(1− qi), and

(2.9)

[
n

k

]
q

=
[n]q!

[k]q![n− k]q!
=

∏n
i=1(1− qi)∏k

i=1(1− qi)
∏n−k

j=1 (1− qj)
.

The symbol
[
n
k

]
q
is called the q-binomial coefficient or Gaussian polynomial. It is not obvious

from this definition that
[
n
k

]
q

is even an integer, in fact it seems to be no more than a

rational function in q, but like the binomial coefficient the denominator always cancels with
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the numerator. This fact is not transparent until we make the following identification with
the generating functions Cq(n, k) which are clearly polynomials in q. What is clear however
is that if q = 1, then

[
n
k

]
1

=
(

n
k

)
because we can easily check [n]1 = n and [n]1! = n!. The

following statement makes it clear however that
[
n
k

]
q

is a polynomial in q with non-negative

integer coefficients.

Exercise 6. (credit D. Stanton) If n and k are relatively prime then

1

[n]q

[
n

k

]
q

is a polynomial in q with positive integer coefficients. Is there a set of combinatorial objects
for which this is a generating function?

Proposition 2.3. For n, k ≥ 0,

Cq(n, k) =

[
n + k

k

]
q

Proof. We will establish that the q-binomial coefficients satisfy the same recurrence as
the polynomials Cq(n, k) and that they agree for the obvious bases cases and hence are the
equal. For n, k ≥ 0,[

n + k

k

]
q

=

∏n+k
i=1 (1− qi)∏k

i=1(1− qi)
∏n

j=1(1− qj)

=
(1− qn + qn − qn+k)

∏n+k−1
i=1 (1− qi)∏k

i=1(1− qi)
∏n

j=1(1− qj)

=

∏n+k−1
i=1 (1− qi)∏k

i=1(1− qi)
∏n−1

j=1 (1− qj)
+ qn

∏n+k−1
i=1 (1− qi)∏k−1

i=1 (1− qi)
∏n

j=1(1− qj)

=

[
n + k − 1

k

]
q

+ qn

[
n + k − 1

k − 1

]
q

Now since the generating function Cq(n, k) also satisfies Cq(n, k) = Cq(n−1, k)+qnCq(n, k−
1) and Cq(n, 0) = Cq(0, k) =

[
n
0

]
q

=
[
k
k

]
q

= 1 then we have that Cq(n, k) =
[
n+k

k

]
q

for all

n, k ≥ 0. �

Example 9. Calculate the polynomial[
5

2

]
q

=
(1− q)(1− q2)(1− q3)(1− q4)(1− q5)

(1− q)(1− q2)(1− q)(1− q2)(1− q3)

= (1 + q2)(1 + q + q2 + q3 + q4)

= 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6

This polynomial is counting the number of partitions which fit inside of a 2 × 3 rectangle.
We draw the 2× 3 rectangle below 10 times and fill it with each of the partitions which fit
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in this rectangle.

2.0.1. Grassmannian permutations and partitions. Recall that a permutation σ ∈
Symn is called Grassmannian if it has at exactly one descent. If the descent is a position k
then the sequence σ1, σ2, . . . , σk is an increasing sequence of integers. In fact, this sequence
completely determines the permutation since σk+1, σk+2, . . . , σn is also an increasing sequence
and consists of the remaining integers. If {σ1, σ2, . . . , σk} = {1, 2, . . . k} then there cannot
be a descent at position k because the next smallest value that can appear is k + 1. If the
first k values are not just the values 1 through k and they are in increasing order and the
last n− k values are in increasing order then σ is a Grassmannian permutation.

So every subset of size k of the integers {1, 2, . . . , n} except for the set {1, 2, . . . , k} deter-
mines a Grassmannian permutation with a descent at position k therefore there are

(
n
k

)
− 1

Grassmannian permutations in Symn with a descent at position k and

(2.10)
n−1∑
k=1

((
n

k

)
− 1

)
=

(
n∑

k=0

(
n

k

))
− n = 2n−1 − n

Grassmannian permutations in Symn with a descent anywhere.

To every σ in Symn we can associate an n×n subset of cells with a mark in the (i, σi) cell for
each 1 ≤ i ≤ n (the bottom left hand corner of this diagram will have the coordinate (1, 1)).
For example, consider the Grassmannian permutation 146792358 which will be associated
to the diagram

•
•

•
•

•
•

•
•

•

Now for every point in this grid, place an × in every cell that lies directly north or directly
east of a •.

××××•××××
×××× ×××•
×××•×××××
××•××××××
×× ××•×
×•×××××××
× ×•××
× •×××•××××××××

Notice that the cells which do not have either a • or a × appear as empty rows and these
will be decreasing in size. If the permutation is Grassmannian then the sequence of rows
which are not filled can be viewed in a natural way as a partition. If the descent in the
permutation is at position k then this partition will have width less than or equal to k and
height less than or equal to n− k since the rows σ1, σ2, . . . , σk will all be filled.
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2.1. Tableaux

A tableau in the most general sense we will consider will be a function from a subset S of
points in Z× Z to a set of labels M . If S = D(λ) (or D(λ/µ)) then λ (respectively λ/µ) is
referred to as the shape of the tableau T . λ(T ) will sometimes be used to denote the domain
of the tableau T and in particular when the domain of this function is a partition D(λ) or
D(λ/µ) it will represent λ or λ/µ.

A tableau can then be represented with a diagram where λ(T ) is drawn as the subset of cells
on the Z × Z grid just as we drew the diagram for a partition in the previous section, and
then the value of Ts is recorded in the cell s ∈ λ(T ).

Example 10. Let T be a tableau with λ(T ) equal to D(λ) where λ = (2, 1). In addition,
say that T(0,0) = 1, T(1,0) = 3 and T(0,1) = 2. The diagram for tableau T will be

2
1 3 .

Tableaux are a convenient means of recording information about partitions and it will be
important for us to examine certain classes of tableaux. For the moment we will concentrate
on tableaux with λ(T ) is the diagram for a partition or a skew-partition with labels of the
tableaux (the range of the tableaux) limited to positive integers.

We will define the content of a tableau to be the sequence which records the number of cells la-
beled with each value i. Let ni(T ) = #{s : Ts = i} and define µ(T ) = (n1(T ), n2(T ), n3(T ) . . .).
As long as T is a finite tableau (we will never consider the infinite case) the sequence µ(T )
will have all but a finite number of entries non-zero and largest label which appears in the
tableau T will be denoted `(µ(T )).

We will call a tableau column strict if T(i,j) ≤ T(i+1,j) for all pairs (i, j), (i + 1, j) ∈ λ(T )
(the entries are weakly increasing in the rows of the partition) and T(i,j) < T(i,j+1) whenever
(i, j), (i, j + 1) ∈ λ(T ) (the entries are strictly increasing in the columns of the partition).

A column strict tableau can be seen as a sequence of partitions, if we restrict our attention
to the set of cells {s : Ts ≤ k} (we shall denote T restricted to this domain by T

∣∣
1...k

) then

the shape will always be a partition. Since T
∣∣
1...k−1

and T
∣∣
1...k

have the shape of partitions
and there can be at most one cell labeled by a k in each column from our restrictions on the
labeling of cells, then λ(T

∣∣
1...k

)/λ(T
∣∣
1...k−1

) ∈ H.

Stated in another way, a column strict tableau T can be thought of as a sequence of partitions.
Set λ(k) := λ(T

∣∣
1...k

), then

(2.11) λ(1) ⊆ λ(2) ⊆ · · · ⊆ λ(n) ⊆ λ(T )

with the property that λ(k)/λ(k−1) ∈ H.
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Example 11. Let

T =

4 5 7
2 3 3 4
1 1 1 1 2 2 4 5 7 7 .

The content of the tableau T is µ(T ) = (4, 3, 2, 3, 2, 0, 3). Notice that the tableau T satisfies
the condition of being column strict. One can think of T as an object which conveniently
records a sequence of partitions and the condition of being column strict records the fact
that each partition differs from the next by a horizontal strip.

· ⊆ ⊆ ⊆ ⊆

⊆ ⊆ ⊆ = λ(T )

Reading word of T . Content of T . ni(T ) number of occurrences of the

2.1.1. Crystal Operators. If the number of cells labeled i + 1 is greater than the
number of cells labeled with an i then an operation that we would like to be able to perform
is to change one of the labels of i + 1 to an i in such a way that the operation is reversible.
We will define these operations as crystal operators because they appear in crystal basis
theory although they are also useful in the theory of symmetric functions.

Fix an integer i and let w = R(T ) be the reading word of the tableau T . Consider the
sequence of symbols ‘)’ and ‘(’ formed by reading w from left to right and recording a close
parenthesis ‘)’ for each i that occurs in w and an open parenthesis for each i + 1 that occurs
in w.

We will let εi(T ) be the number of open parentheses that are not matched with a close
parenthesis that lies to the right and let φi(T ) be the number of close parentheses that do
not match with an open parenthesis to the left.

Restated in another way, φi(T ) = max{ni(w1...k)− ni+1(w1...k) : 1 ≤ k ≤ `(w)} and εi(T ) =
max{ni+1(wk...`(w))− ni(wk...`(w)) : 1 ≤ k ≤ `(w)} where ni(w) is the number of occurrences
of i in the word w = w1w2 · · ·w`(w) and wa...b is the subword of w equal to wawa+1 · · ·wb.

Example 12.

T =

5 6 6
3 4 5 7 7 8
2 2 3 4 4 5 5 9
1 1 1 1 2 2 4 8
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For this tableaux R(T ) = w = 5663457782234455911112248. We list below the value of i
and the sequence of parentheses that is relevant to the calculation of φi(T ) and εi(T ).

i = 1 (())))(( φ1(T ) = 2 ε1(T ) = 2

i = 2 ())()) φ2(T ) = 2 ε1(T ) = 0

i = 3 )()((( φ3(T ) = 1 ε1(T ) = 3

i = 4 ()()(() φ4(T ) = 0 ε1(T ) = 1

i = 5 )(())) φ5(T ) = 2 ε1(T ) = 0

i = 6 ))(( φ6(T ) = 2 ε1(T ) = 2

i = 7 ))(( φ7(T ) = 2 ε1(T ) = 2

i = 8 )() φ8(T ) = 1 ε1(T ) = 0

We will define the crystal operator fi to act on tableaux such that φi(T ) > 0 (and if φi(T ) ≤ 0
then fiT will be undefined or as it is sometimes stated, fiT = 0). Let s ∈ λ(T ) be the cell
such that Ts = i and s corresponds to the rightmost close parenthesis ‘)’ which is unmatched
in the parenthesis sequence. fiT is the tableau such that (fiT )s = i + 1 and (fiT )c = Tc for
c ∈ λ(T ) and c 6= s.

The crystal operator ei is the inverse of this operation. It is defined on tableau such that
εi(T ) > 0. If s ∈ λ(T ) is the cell of T such that Ts = i+1 and it corresponds to the leftmost
open parenthesis ‘(’ which is unmatched in the parenthesis sequence then (eiT )s = i and eiT
has all of the other entries exactly the same as in T (that is, (eiT )c = Tc for c ∈ λ(T ) and
c 6= s).

Example 13. Let

T =

3 4 5
2 3 3 4
1 1 1 3

then we have

f1T =

3 4 5
2 3 3 4
1 1 2 3 e2T =

3 4 5
2 2 3 4
1 1 1 3

f3T =

3 4 5
2 3 4 4
1 1 1 3 e4T =

3 4 4
2 3 3 4
1 1 1 3

f4T =

3 4 5
2 3 3 5
1 1 1 3

while each of f2T , e1T and e3T are undefined.

From these definitions we observe the following properties of these operators:

Proposition 2.4. If φi(T ) > 0 then φi(fiT ) = φi(T ) − 1 and εi(fiT ) = εi(T ) + 1, and in
addition

(2.12) eifiT = T.
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Similarly, if εi(T ) > 0 then φi(eiT ) = φi(T ) + 1 and εi(eiT ) = εi(T )− 1, and in addition

(2.13) fieiT = T.

Proof. Notice that the operation fi has the effect of changing the corresponding paren-
thesis sequence of T by changing an unmatched close parenthesis to an unmatched open
parenthesis so that φi(fiT ) will be one smaller than φ(T ) and εi(fiT ) will be one larger than
φ(T ). In fact, since the rightmost unmatched close parenthesis is changed to the leftmost
unmatched open parenthesis, ei will will have the inverse effect when it acts on fiT .

Similar statements about the operator ei justify the second part of this proposition. �

The crystal operators can be used to define a symmetric group action on the content of

tableaux. Let siT = f
φi(T )−ε(T )
i T where we have set f−k

i T = ek
i T for k > 0.

The operators si are the generators for a symmetric group action on the content of the
tableau T , since if µ(T ) = (a1, a2, . . . , an) then µ(siT ) = (a1, a2, . . . , ai+1, ai, . . . , an). We
must justify however that the operators si which satisfy the Coxeter relations and therefore
define a symmetric group action.

Proposition 2.5. For 1 ≤ i ≤ max{Ts : s ∈ λ(T )},
s2

i T = T,

sisjT = sjsiT for |i− j| > 1

sisi+1siT = si+1sisi+1T

Proof. From the previous proposition we see that φi(siT ) = φi(f
φi(T )−εi(T )
i T ) = φi(T )−

(φi(T )− εi(T )) = εi(T ) and similarly, ε(siT ) = εi(T ) + φi(T )− εi(T ) = φi(T ). Therefore to
compute

s2
i T = si(siT ) = f

φi(siT )−εi(siT )
i siT

= f
εi(T )−φi(T )
i f

φi(T )−εi(T )
i T = T

There are two cases to show why the last expression is T . If φi(T ) − εi(T ) > 0, then

f
εi(T )−φi(T )
i f

φi(T )−εi(T )
i T = e

φi(T )−εi(T )
i f

φi(T )−εi(T )
i T = T . If we have φi(T ) − εi(T ) < 0, then

f
εi(T )−φi(T )
i f

φi(T )−εi(T )
i T = f

φi(T )−εi(T )
i e

φi(T )−εi(T )
i T = T .

Now assume that |i− j| > 1. The action of si on T changes some of the labels with i to i+1
(or the reverse). Since the entries labeled with an i and i + 1 are the same in both T and
sjT , si has the same effect on both of these tableaux. Similarly, the entries of j and j + 1
are the same in both T and siT and so sj has the effect on both these tableaux. For this
reason sisjT = sjsiT . �

A column strict tableau T will be called standard if it is a bijection from the the set λ(T ) to
the labels {1, 2, . . . , |λ(T )|}.
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Theorem 2.6. The number of standard tableaux of shape λ with λ ` n is equal to

(2.14)
n!∏

s∈λ hλ(s)

where hλ(s) is hook length of the cell s in the partition λ (that is, hλ(i, j) = λi−i+1+λ′j−j).
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