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CHAPTER 2

Symmetric polynomials

Our presentation of the ring of symmetric functions has so far been non-standard and re-
visionist in the sense that the motivation for defining the ring Λ was historically to study
the ring of polynomials which are invariant under the permutation of the variables. In this
chapter we consider the relationship between Λ and this ring.

In this section we wish to consider polynomials f(x1, x2, . . . , xn) ∈ Q[x1, x2, . . . , xn] such that
f(xσ1 , xσ2 , · · · , xσn) = f(x1, x2, . . . , xn) for all σ ∈ Symn. These polynomials form a ring
since clearly they are closed under multiplication and contain the element 1 as a unit.

We will denote this ring

ΛXn = {f ∈ Q[x1, x2, . . . , xn] : f(x1, x2, . . . , xn) =(2.1)

f(xσ1 , xσ2 , . . . , xσn) for all σ ∈ Symn}

Now there is a relationship between Λ and ΛXn by setting pk[Xn] :=
∑n

k=1 xk
i and define a

map Λ −→ ΛXn by the linear homomorphism

(2.2) pλ 7→ pλ1 [Xn]pλ1 [Xn] · · · pλ`(λ)
[Xn]

with the natural extension to linear combinations of the pλ.

In a more general setting we will take the elements Λ to be a set of functors on polynomials
pk[xi] = xk

i and pk[cE + dF ] = cpk[E] + dpk[F ] for E, F ∈ Q[x1, x2, . . . , xn] and coefficients
c, d ∈ Q then pλ[E] := pλ1 [E]pλ2 [E] · · · pλ`(λ)

[E]. This means that f ∈ Λ will also be a

function from Q[x1, x2, . . . , xn] to itself with the additional property that if E ∈ ΛXn ⊆
Q[x1, x2, . . . , xn] then f [E] ∈ ΛXn since if σE = E for a σ ∈ Symn then we will also have
σpk[E] = pk[σE] = pk[E] (similarly, pλ[E] and f [E] will be invariant under σ).

Example 5. As a sample computation we determine p2[X3], e2[X3] and h2[X3].

p2[x1 + x2 + x3] = x2
1 + x2

2 + x2
3

e2[x1 + x2 + x3] = p(1,1)[x1 + x2 + x3]/2− p(2)[x1 + x2 + x3]/2

= (x1 + x2 + x3)
2/2− (x2

1 + x2
2 + x2

3)/2 = x1x2 + x1x3 + x2x3

h2[x1 + x2 + x3] = p(1,1)[x1 + x2 + x3]/2 + p(2)[x1 + x2 + x3]/2

= (x1 + x2 + x3)
2/2 + (x2

1 + x2
2 + x2

3)/2

= x2
1 + x2

2 + x2
3 + x1x2 + x1x3 + x2x3

25
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Example 6. Calculate e4[X3].

e4[X3] =
p(14)[X3]

24
−

p(211)[X3]

4
+

p(22)[X3]

8
+

p(31)[X3]

3
−

p(4)[X3]

4

=
(x1 + x2 + x3)

4

24
− (x2

1 + x2
2 + x2

3)(x1 + x2 + x3)
2

4
+

(x2
1 + x2

2 + x2
3)

2

8

+
(x3

1 + x3
2 + x3

3)(x1 + x2 + x3)

3
− x4

1 + x4
2 + x4

3

4
= 0

Remark 2. pk is linear homomorphism because as we stated above pk[cE + dF ] = cpk[E] +
dpk[F ] for E, F ∈ Q[x1, x2, . . . xn] and coefficients c, d ∈ Q, but this is not true for pλ in
general (e.g. p(2,1)[x1 + x2] = (x2

1 + x2
2)(x1 + x2) 6= p(2,1)[x1] + p(2,1)[x2] = x3

1 + x3
2).

Remark 3. This notation is an extension of the linear homomorphism defined in equation
(1.2) where we set Xn := x1 + x2 + · · ·+ xn.

In addition we will also consider Λ as functors on formal power series. Let R = Q[x1, x2, x3, . . .]

and R(k) as the subspace of elements in R of degree k. R̂(k) will denote the completion of
this subspace consisting of polynomials and formal series of monomials of degree k. Next
define the ring

ΛX = {f(x1, x2, . . .) ∈ R̂(k) : f(x1, x2, . . .) =(2.3)

f(xσ1 , xσ2 , . . .) for any permutation σ, k ≥ 0}.

Just as we had for ΛXn ⊆ Q[x1, x2, . . . , xn], f ∈ Λ acts on E ∈ ΛX ⊆
⊕

k≥0 R̂(k). Denote

X = x1 + x2 + x3 + · · · ∈ ΛX so that pk[X] =
∑

i≥1 xk
i . The operation of setting xn+1 =

xn+2 = · · · = 0 maps X to Xn and ΛX to ΛXn such that the following diagram commutes.

Remark 4. This notation we have just introduced is quite useful, though there is one pitfall
with which the reader should be aware.

Constants and variables are very different.

What we mean by this comment is that in polynomial notation where if f(x) = xk then
f(2) = 2k and f(−1) = (−1)k (here constants have the same properties that variables do).
In our notation, pk[2] = 2 and pk[−1] = −1 because pk[xi] = xk

i , while pk does nothing when
it acts on constants. The reader should spend a few minutes to try to figure out a ‘meaning’
of pk[c] or pk[cXn] because these do not represent pk(c) and pk(cx1, cx2, . . . , cxn) and it is
important in doing calculations to be aware of this difference.
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One interpretation of the expression f [n] for a positive integer n should be thought of as
f [1 + 1 + · · · + 1] and represents the symmetric function f ∈ Λ with each pk replaced by
xk

1 +xk
2 + · · ·+xk

n and with each of these variables set to 1. We will derive more formulas for
our symmetric functions below and using (1.5) we see that ek[n] = 0 for n = 0, 1, 2, . . . , k−1
and ek[k] = 1. f [c] when c is not a non negative integer does not have such a concrete
realization and is instead a polynomial interpolation of f [n].

Similarly, we have that kXn = Xn + Xn + · · · + Xn (k-times) and hence f [kXn] represents
the symmetric function f evaluated at a set of n variables repeated k times.

In some cases we will use a parameter q in some of our formulas. This parameter will act as a
variable and has the property that pk[qX] = qkpk[X]. The contrast between variables (q has
the same properties as a variable) and constants can be seen here since pλ[qX] = q|λ|pλ[X]
while for a constant c, pλ[cX] = c`(λ)pλ[X].

From now on we will denote Xn := x1+x2+· · ·+xn so that we have pk[Xn] = xk
1+xk

2+· · ·+xk
n.

We are now ready to state and prove the fundamental theorem of symmetric functions which
relates the algebra of symmetric functions and the algebra of symmetric polynomials.

We have defined pk[X] to be
∑

i x
k
i and pk[Xn] =

∑n
i=1 xk

i . Therefore we realize pλ[X]
and pλ[Xn] as just products of these elements. This does give us an explicit formula for
hn[X] and en[X] because they are just defined to be hn[X] =

∑
λ`n pλ[X]/zλ and en[X] =∑

λ`n(−1)n−`(λ)pλ[X]/zλ. This formula is not at all adequate because we need only compute
a few of these elements by hand or by computer to realize that the coefficient of any monomial
of degree n in hn[X] is always 1. It is not immediately clear from the definition that the
coefficients should even be integers.

Proposition 2.1. For n ≥ 1,

(2.4) hn[X] =
∑

i1≤i2≤···≤in

xi1xi2 · · ·xin

(2.5) en[X] =
∑

i1<i2<···<in

xi1xi2 · · ·xin

These results are implied by the following expressions for the generating functions of hn[X]
and en[X]

(2.6) H(t)[X] =
∑
n≥0

hn[X]tn =
∏

i

1

1− txi

(2.7) E(t)[X] =
∑
n≥0

(−1)nen[X]tn =
∏

i

(1− txi)
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Proof. Consider the generating function P (t)[X] =
∑

r≥1 pr[X]/rtr. This may be
rewritten as

P (t)[X] =
∑
r≥1

pr[X]

r
tr =

∑
r≥1

∑
i

xr
i

r
tr

=
∑

i

∑
r≥1

xr
i

r
tr = −

∑
i

log(1− txi)(2.8)

= log

(∏
i

1

1− txi

)
However we have already seen in equation (1.9) that H(t)[X] = exp(P (t))[X] = exp(P (t)[X])
and a similar calculation yields E(t)[X] = exp(−P (t)[X]). This demonstrates equations (1.6)
and (1.7).

The equation for hn[X] follows from taking the coefficient of tn in (1.6). In each monomial
there are n variables and each xi can appear with repetition because 1

1−txi
= 1+txi +(txi)

2+

(txi)
3 + · · · .

The equation for en[X] can be arrived at by taking the coefficient of tn in (1.7). In each
monomial each xi can appear at most once and each variable that appears contributes a
factor of −1 and exactly n variables will appear in each monomial. �

We are now prepared to explicitly state the relationship between Λ and ΛXn . These spaces
are not isomorphic, however the degree k components of each of these spaces is isomorphic
as long as k ≤ n.

Proposition 2.2. ΛXn is algebraically generated by the elements e1[Xn], e2[Xn], . . ., en[Xn]
and every f(Xn) ∈ ΛXn is uniquely expressible as a linear combination of the elements
eλ[Xn] for λ partitions with parts smaller or equal to n. In particular, the subspace of ΛXn of
degree k is isomorphic to the subspace of degree k elements of Λ under the map which sends
f 7→ f [Xn].

Proof. For any f(x1, x2, · · · , xn) ∈ ΛXn we note that the coefficient of xα1
1 xα2

2 · · ·xαn
n

and xλ1
1 xλ2

2 · · ·xλn
n must be the same if α = σλ for some σ ∈ Symn. Therefore a linear basis

of this space is given by the functions

(2.9) m̂Xn
λ =

∑
α∼λ

xα1
1 xα2

2 · · ·xαn
n

where λ is a partition with no more than n parts and the sum is over compositions α such
that when the entries sorted in decreasing order the resulting partition is equal to λ. The
dimension of ΛXn at degree m is the number of partitions of m with no more than n parts.

Now consider the elements eλ[Xn] ∈ ΛXn which are symmetric and hence can be expressed
in the m̂Xn

µ basis. Notice that if λ1 ≤ n then

eλ[Xn] = m̂Xn

λ′ + terms containing m̂Xn
µ with µ finer than λ′,
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otherwise eλ[Xn] = 0. Therefore {eλ[Xn]} λ`n
λ1≤n

is a basis for ΛXn and hence ΛXn is alge-

braically generated by the elements e1[Xn], e2[Xn], . . ., en[Xn]. �

Since en is a linear combination of the hλ with λ ` n then we also have the following corollary.

Corollary 2.3. ΛXn is algebraically generated by the elements h1[Xn], h2[Xn], . . ., hn[Xn]
and every f(Xn) ∈ ΛXn is uniquely expressible as a linear combination of the elements hλ[Xn]
for λ partitions with parts smaller or equal to n.

Similarly, pn can is a linear combination of the eλ with λ ` n and we can also state the
previous corollary with pi[Xn] in place of hi[Xn]. There is however a difference between
the pi[Xn] and the ei[Xn] or hi[Xn] since if f(Xn) is a symmetric polynomial with integer
coefficients then when it is an expressed as a polynomial in either the {eλ[Xn]}λi≤n basis
or the {hλ[Xn]}λi≤n basis it will have integer coefficients. This is not true in general of the
{pλ[Xn]}λi≤n basis (see exercise 2.8).

This leads us to what we will refer to as the fundamental theorem of symmetric functions.
It says essentially that Λ and ΛX are isomorphic and as long as the degree of the symmetric
functions you are working with is smaller than n then Λ, ΛXn and ΛX are all the same.

Theorem 2.4. For f, g ∈ Λ with deg(f) ≤ n and deg(g) ≤ n, the following are equivalent:

(1) f = g
(2) f [E] = g[E] for every expression E ∈

⊕
k≥0 R(k)

(3) f [X] = g[X] where X = x1 + x2 + x3 + · · ·
(4) f [Xn] = g[Xn] where Xn = x1 + x2 + · · ·+ xn

Proof. The implications (1) ⇒ (2) and (2) ⇒ (3) are trivial.

(3) ⇒ (4). If f [X] = g[X], then this expression holds independent of the values of xi.
In particular, if we set xn+1 = xn+2 = · · · = 0, then we see that it must also hold that
f [Xn] = g[Xn].

(4) ⇒ (1). Assume that f 6= g then f − g ∈ Λ can be expressed in the eλ basis with at least
one coefficient not equal to 0. As we showed in the last proposition, eλ[Xn] is a basis of ΛXn

and hence f [Xn]− g[Xn] is not equal to 0. �

The formulas for hk[X] and ek[X] are interesting because it also gives us recurrences in terms
of variables. Because any single variable appears in any monomial in hk[X] with exponent
0, 1, 2, . . . , k and in ek[X] with exponent either 0 or 1, then we can grade hk[X+z] or ek[X+z]
depending on the coefficient of z.

(2.10) hk[X + z] =
k∑

i=0

zihk−i[X]
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(2.11) ek[X + z] = ek[X] + zek−1[X]

This is useful because it can be used to derive a formula for the homogeneous and elementary
symmetric functions at 1−qn

1−q
= 1 + q + q2 + · · ·+ qn−1

Example 7.

p2

[
1− q3

1− q

]
= p2[1 + q + q2] = 1 + q2 + q4 =

1− q6

1− q2

e2

[
1− q3

1− q

]
= p(1,1)

[
1− q3

1− q

]
/2− p(2)

[
1− q3

1− q

]
/2

=
(1− q3)2

2(1− q)2
− 1− q6

2(1− q2)

=
(1− 2q3 + q6)(1 + q)− (1− q6)(1− q)

2(1− q)(1− q2)
= q

1− q3

1− q

h2

[
1− q3

1− q

]
= p(1,1)

[
1− q3

1− q

]
/2− p(2)

[
1− q3

1− q

]
/2

=
(1− q3)2

2(1− q)2
+

1− q6

2(1− q2)

=
(1− 2q3 + q6)(1 + q) + (1− q6)(1− q)

2(1− q)(1− q2)
=

(1− q3)(1− q4)

(1− q)(1− q2)

The use of H(t)[X] as a generating function in which we can take coefficients a useful
technique for deriving results in the theory of symmetric functions. To this end we define
the special element Ω =

∑
n≥0 hn which lies in the completion of Λ. In some sense, Ω is still

a generating function for the homogeneous generators like H(t) from the previous section
and we have Ω = H(1), H(t)[X] = Ω[tX], E(t)[X] = Ω[−X]. This special element has some
remarkable properties and we call it the Cauchy element.

Proposition 2.5.

(2.12) Ω[X + Y ] = Ω[X]Ω[Y ]

and consequently

(2.13) Ω[−X] = Ω[X]−1

Proof. Note that since Ω = H(1) so we have from equation (1.6) that

(2.14) Ω[X] =
∏

i

1

1− xi

.

Therefore we also have

(2.15) Ω[X + Y ] =
∏

i

1

1− xi

∏
i

1

1− yi

= Ω[X]Ω[Y ]
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Notice that Ω[X − X] = 1 since for k > 0, pk[X − X] = pk[X] − pk[X] = 0. This implies
that the operation of sending f to f [X −X] gives the constant term of f and for Ω this is
just 1. Therefore

(2.16) Ω[X −X] = Ω[X]Ω[−X] = 1

and so Ω[−X] = Ω[X]−1 =
∏

i 1− xi. �

Algebra with infinite series sometimes has unusual consequences and there is one relation
involving the element Ω which we shall exploit as often as possible.

Proposition 2.6. (The phantom relation) Let φ(z, u) =
∑

k∈Z zku−k, then for any alphabet
X,

(2.17) φ(z, u)Ω[zX]Ω[−uX] = φ(z, u)

What this means is that φ(z, u) (1− Ω[zX]Ω[−uX]) = 0 which is slightly unexpected since
elements of our polynomial algebra are not zero divisors, however playing with these infinite
series we can arrive at these unusual relations.

Proof. Take the coefficient of zmun in φ(z, u)Ω[zX]Ω[−uX]. This will be equal to

· · ·+ (−1)n−1hm+1[X]en−1[X] + (−1)nhm[X]en[X]

+ (−1)n+1hm−1[X]en+1[X] + (−1)n+2hm−2[X]en+2[X] + · · ·

Because hn[X] = en[X] = 0 for n < 0, this sum is not infinite for each m and n, instead we
have that for m + n > 0 the sum is equal to

(2.18)
m+n∑
i=0

(−1)ihm+n−i[X]ei[X] = 0.

If m + n < 0, then the sum is 0 simply because all terms are equal to 0, and if m + n = 0
then exactly one term is non-zero and it is equal to 1. This means that the coefficient of
zmun in φ(z, u)Ω[zX]Ω[−uX] is equal to 1 if m = −n and 0 otherwise and hence the series
is equal to φ(z, u). �

Another remarkable property of the element Ω is that it plays the role of the identity element
with respect to the Kronecker product. This means that for any symmetric function Ω∗ f =
f ∗Ω = f . The bialgebra structure with product ∗ and coproduct ∆′ has an identity element
but that element does not lie in the algebra Λ, instead it is in the completion of Λ.

2.1. The monomial symmetric functions

For any given basis {aλ}λ of Λ (so far we are essentially working with just the power,
homogeneous and elementary) we can ask “what is the set of elements of Λ, {bλ}λ, such that
〈aλ, bµ〉 = δλµ?”
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It is a basic fact of linear algebra that the {bλ}λ must also be a basis since if there is some
linear dependence

∑
µ cµbµ = 0 with at least one cλ 6= 0, then

∑
µ cµbµ cannot be 0, because

then cλ =
〈∑

µ cµbµ, aλ

〉
= 〈0, aλ〉 = 0. Therefore because the set {bλ}λ has exactly the

number of partitions of n elements at each degree and this set is linearly independent and
therefore it spans and is a basis. We will call {bλ}λ the basis dual to {aλ}λ. Notice also that
this property is reflexive and {aλ}λ is the dual basis to {bλ}λ as well.

The bases {pλ}λ and {pλ/zλ}λ are a pair of dual bases. As we have only just developed two
other bases {hλ}λ and {eλ}λ, we should ask what their dual bases are. For this reason we
develop the following amazing property of the element Ω. In the expression below, XY is the
product of X =

∑
i xi and Y =

∑
j yj and hence XY =

∑
i,j xiyj. Therefore by definition,

Ω[XY ] =
∏

i,j
1

1−xiyj
.

Proposition 2.7. Let {aλ}λ be a basis for the symmetric functions then {bλ}λ is the dual
basis if and only if

(2.19) Ω[XY ] =
∑

λ

aλ[X]bλ[Y ]

It follows then that

(2.20) 〈f [X], Ω[XY ]〉X = f [Y ]

Proof. Since Ω =
∑

n≥0

∑
λ`n pλ/zλ, then we see that

Ω[XY ] =
∑
n≥0

∑
λ`n

pλ[X]pλ[Y ]/zλ

=
∑
n≥0

∑
λ`n

∑
µ`n

aµ[X] 〈pλ[X], bµ[X]〉X pλ[Y ]/zλ

=
∑
n≥0

∑
µ`n

aµ[X]
∑
λ`n

〈pλ[X], bµ[X]〉X pλ[Y ]/zλ(2.21)

=
∑
n≥0

∑
µ`n

aµ[X]bµ[Y ]

The reverse implication can be seen from the same calculation since∑
n≥0

∑
λ`n

pλ[X]pλ[Y ]/zλ =
∑
n≥0

∑
λ`n

∑
µ`n

aµ[X] 〈pλ[X], bµ[X]〉X pλ[Y ]/zλ

so we can conclude by taking the coefficient of pλ[Y ]/zλ that pλ =
∑

µ`n aµ 〈pλ, bµ〉. This

means that if aγ =
∑

λ cγλpλ,

aγ =
∑

λ

cγλpλ =
∑

λ

cγλ

∑
µ`n

aµ 〈pλ, bµ〉 =
∑
µ`n

〈aγ, bµ〉 aµ

Since {aλ}λ is a basis, we can take the coefficient of aλ on both sides of this equation and
conclude that 〈aγ, bλ〉 = δλγ and hence {bµ}µ is the dual basis to {aλ}λ.
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To show the last result, we take for f ∈ Λ and expand it in the power symmetric function
basis using some coefficients cλ, f =

∑
λ cλpλ.

〈f [X], Ω[XY ]〉 =
∑

λ

cλ

∑
µ

〈pλ[X], pµ[X]/zµ〉X pµ[Y ]

=
∑

λ

cλpλ[Y ] = f [Y ].(2.22)

�

We will define the basis dual to {hλ}λ to be the monomial basis {mλ}λ and the basis dual to
the elementary symmetric functions {eλ}λ are usually referred to as the forgotten symmetric
functions. The last proposition can be used to find a direct formula for the monomial
symmetric functions.

Proposition 2.8. Let λ ` n,

(2.23) mλ[X] =
∑
α∼λ

∏
i

xαi
i

where the sum is over all sequences α = (α1, α2, α3, . . .) and we have taken α ∼ λ to mean
the number of non-zero entries in α is `(λ) and if they are sorted in decreasing order the
sequence is equal to λ.

Proof. From the last propostion we know that Ω[XY ] =
∏

i
1

1−xiyj
=
∑

λ hλ[X]mλ[Y ].

Now consider the coefficient of yα1
i1

yα2
i2
· · · yαk

ik
in Ω[XY ] is

(2.24)
∏

j

1

1− xjyi1

∣∣∣
y

α1
i1

∏
j

1

1− xjyi2

∣∣∣
y

α2
i2

· · ·
∏

j

1

1− xjyik

∣∣∣
y

αk
ik

which is equal to hα1 [X]hα2 [X] · · ·hαk
[X]. Therefore we may realize Ω[XY ] as a sum over

all sequences α = (α1, α2, α3, . . .) with αi ≥ 0 and a finite number of non-zero entries we find
that

(2.25) Ω[XY ] =
∑

α

hα[X]yα

where hα = hλ if α ∼ λ. This means that mλ[Y ] is equal to the coefficient of hλ[X] in the
expression above and hence it is equal to

∑
α∼λ yα. �

We have defined the monomial symmetric functions {mλ}λ as the basis which is dual to the
homogeneous basis {hλ}λ, but now knowing an explicit formula for mλ[X] allows us to easily
deduce relations between these bases that are difficult to show otherwise. For instance, we
immediately see that m(k)[X] = pk[X] and m(1k)[X] = ek[X] and therefore m(k) = pk and
m(1k) = ek and so unlike our other bases mλ is not generated as a product of elements. We
can also see that hk =

∑
λ`k mλ either from Proposition 1.1 or by recalling that we have

calculated 〈hk, hλ〉 = 1 as an exercise. The formula for mλ[X] can also be used to derive a
combinatorial rule for multiplying two monomial symmetric functions together.
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Proposition 2.9. Let λ ` n and µ ` k

(2.26) mλ ·mµ =
∑

ν`n+k

rν
λµmν

where rν
λµ is the number of pairs of sequences (α, β) with αi, βi ≥ 0 where α ∼ λ and β ∼ µ

such that α + β = ν.

Proof. This is easily seen in the expansion of mλ[X]mµ[X], we need only take the
coefficient of xν in this expression. There is a contribution of weight 1 to each monomial of
type xν in the product for each α ∼ λ and β ∼ µ such that xαxβ = xν . This is equivalent to
the condition that α + β = ν. �

Example 8. We ask what the coefficient of m(4,3,3) is in m2
(2,2,1). This must be 2 because

the only pairs (α, β) ∼ ((2, 2, 1), (2, 2, 1)) such that α + β = (4, 3, 3) are ((2, 1, 2), (2, 2, 1))
and ((2, 2, 1), (2, 1, 2)). As a more pictorial way of expressing this result, we may ask how
many ways are there of coloring the Young diagram of the partition (4, 3, 3) with two colors
(the first color always lies to the left of the second) such that the horizontal pieces of the
first color are of size (2, 2, 1) and of the second color are of size (2, 2, 1). The two diagrams
are expressed as

Perhaps this combinatorial rule looks familiar since the coefficient of mν in mλmµ will be
the same as the coefficient of hλ ⊗ hµ in the expression ∆(hν) (a fact which we leave to the
reader as an exercise). We used the same picture as appeared in chapter 1 to demonstrate
exactly that connection.

From this we can arrive at a combinatorial method for computing the scalar product of
〈hλ, hµ〉, 〈eλ, hµ〉 or 〈pλ, hµ〉. The scalar product of 〈hn, hλ〉 appears in the exercises of the
last section, but the solution relied on the use of the h⊥k operators on the hµ basis. This time
we give a proof that relies on a simple observation about symmetric functions given in terms
of their variables. Since the homogeneous basis is dual to the monomial basis, we know that
〈f, hµ〉 is the coefficient of mµ[X] in f [X].

Proposition 2.10. For µ a partition of n, 〈hλ, hµ〉 = Aλµ or

(2.27) hµ =
∑

λ

Aλµmλ

where Aλµ is the number of matricies with entries in N whose column sum is µ and row sum
is equal to λ. 〈hλ, eµ〉 = Bλµ or

(2.28) eµ =
∑

λ

Bλµmλ
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where Bλµ is the number of matricies with entries in {0, 1} whose column sum is µ and row
sum is equal to λ. 〈hλ, pµ〉 = Cλµ or

(2.29) pµ =
∑

λ

Cλµmλ

where Cλµ is the number of matricies with entries in N whose column sum is µ and row sum
is equal to λ and there is at most one non-zero entry for each column.

Proof. The coefficient of mλ in hµ will be equal to the coefficient of xλ in hµ[X]
so we need only count the number of ways the coefficient xλ may arise in hµ[X]. Since
hn[X] =

∑
|α|=n xα where the sum is over all compositions α whose entries sum to n, we see

that the coefficient of xλ will be the number of sequences (α(1), α(2), . . . , α(`(µ))) such that

xα(1)
xα(2) · · ·xα(`(µ))

= xλ where α(i) is a composition such that |α(i)| = µi. We may think of
α(i) as a column vector of length `(µ) since the last non-zero entry occurs before `(µ) and
the sum of the entries in that column are of course µi. The sum of the rows of the matrix
(α(1), α(2), . . . , α(`(µ))) are exactly λ. Since there is a contribution of 1 to the coefficient of xλ

in hµ[X] for every such matrix Aλµ is exactly the number of such matricies.

The interpretation for Bλµ and Cλµ are very similar. Since the coefficient of mλ in eµ is
equal to the coefficient of xλ in eµ[X], we are counting the number of ways that xλ arises in
eµ[X]. Since en[X] =

∑
|α|=n xα with the sum running over all compositions α with entries

in {0, 1}. This means that the coefficient of xλ is again counting the number of matricies
whose column sums are µi and whose row sums are λj, but with the additional restriction
that the entries in these matricies are either 0 or 1.

Similarly, the interpretation for Cλµ arises because pn[X] =
∑

i x
n
i =

∑
|α|=n xα, where the

sum is over all compositions α with exactly one entry equal to n and the other enetries 0.
This implies that the coefficient of xλ in pµ[X] is the number of matricies whose row sum
λj and whose column sum is µ but at most one entry in the each column is allowed to be
non-zero. �

Example 9. It is useful to see this proposition work in an example. We have established
the coefficient of m(2,2,2) in e(3,2,1) is B(2,2,2),(3,2,1) and recall that this will also be the scalar

product
〈
h(2,2,2), e(3,2,1)

〉
. One method for computing this scalar product could be to compute

this directly by expanding both expressions in the power basis and using the definition of
the scalar product, but we can also construct each of the {0, 1} matricies with row sums
equal to (2, 2, 2) and column sums equal to (3, 2, 1). By exhaustively writing them out, we
see there are exactly 3. They are

(2.30)

1 1 0
1 1 0
1 0 1

 ,

1 1 0
1 0 1
1 1 0

 ,

1 0 1
1 1 0
1 1 0

 .

This is not however the only combinatorial interpretation possible for these coefficients. We
can provide another set of objects with the same number of elements as an interpretation that
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is perhaps easier to visualize. These interpretations are not significantly different however
since there is a direct bijection between the elements in one set and the other.

Corollary 2.11. Alternatively, Aλµ is the number of ways of filling the the Young diagram
for the partition λ with µ1 1s, µ2 2s, etc. that are weakly increasing in the rows and there is
no restriction on the relationship between the values in the columns.

Bλµ is the number of ways of filling the the Young diagram for the partition λ with µ1 1s, µ2

2s, etc. that are strictly increasing in the rows and there is no restriction on the relationship
between the values in the columns.

Cλµ is the number of ways of filling the the Young diagram for the partition λ with µ1 1s, µ2

2s, etc. that are weakly increasing in the rows and we require that all cells with label i must
lie in the same row.

Example 10. We again compute the same coefficient
〈
h(2,2,2), e(3,2,1)

〉
by giving the possible

fillings of the Young diagram of shape (2, 2, 2) with 3 1s, 2 2s and 1 3.

(2.31)

1 3
1 2
1 2

1 2
1 3
1 2

1 2
1 2
1 3

Notice the relationship between these tabloid and to the matricies listed in the previous
example. A bijection between the two sets of objects should be clear.

Example 11. To expand h(3,2) in terms of the monomial symmetric functions we examine
all possible ways of filling the Young diagrams for the partitions of size 5 with 3 1s and 2 2s
such that the entries are weakly increasing in the rows. We draw all of the possible tabloid
as follows:

1 1 1 2 2
2
1 1 1 2

1
1 1 2 2

2 2
1 1 1

1 2
1 1 2

1 1
1 2 2

2
2
1 1 1

2
1
1 1 2

1
2
1 1 2

1
1
1 2 2

2
2
1
1 1

2
1
2
1 1

2
1 2
1 1

2
1 1
1 2

1
1 1
2 2

1
2 2
1 1

1
1 2
1 2

1
2
2
1 1

2
1
1
1 2

1
2
1
1 2

1
1
2
1 2

1
1
1
2 2

There are also
(
5
3

)
= 10 ways of filling the Young diagram of shape (11111) in this manner.

This implies that

h(32) = m(5) + 2m(41) + 3m(32) + 4m(311) + 5m(221) + 7m(2111) + 10m(11111).

Example 12. To express p(321) in the monomial basis we need only examine partitions of
size 6 such that the partition are sums of the parts of (3, 2, 1). We list all of the possible
tabloid for the partitions (3, 2, 1), (3, 3), (4, 2), (5, 1), (6).

3
2 2
1 1 1

2 2 3
1 1 1

1 1 1
2 2 3

2 2
1 1 1 3

3
1 1 1 2 2 1 1 1 2 2 3
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This implies that p(3,2,1) has the expansion

p(321) = m(321) + 2m(33) + m(42) + m(51) + m(6).

The forgotten symmetric functions are the basis which is dual to the elementary symmetric
functions. Because we have that 〈ωf, ωg〉 = 〈f, g〉 where f and g are elements of Λ, we have
that 〈eµ, ω(mλ)〉 = 〈hµ, mλ〉 = δλµ and so {ω(mλ)}λ is the basis which is dual to the {eλ}λ.
We name this basis fλ := ω(mλ), the forgotten symmetric functions.

Just by the definition, we have the following formulas:

(2.32) Ω[XY ] =
∑

λ

eλ[X]fλ[Y ]

For a partition µ of n,

eµ =
∑

λ

Aλµfλ

hµ =
∑

λ

Bλµfλ(2.33)

pµ = (−1)|µ|−`(µ)
∑

λ

Cλµfλ

where the coefficients Aλµ, Bλµ and Cλ,µ are given in Proposition 1.10.

(2.34) fλ · fµ =
∑

ν`|λ|+|µ|

rν
λµfν

where the coefficients rν
λµ are given in Proposition 1.9.

To expand the monomial symmetric functions in terms of the forgotten basis we have the
usual expansion

(2.35) mλ =
∑
µ`|λ|

〈mλ, eµ〉 fµ

Notice also that if we expand the elementary basis in terms of the homogeneous basis we see
the same coefficients

(2.36) eµ =
∑
λ`|µ|

〈mλ, eµ〉hλ

That is if we define the coefficient Dλµ := 〈mλ, eµ〉, then we have the symmetry mλ =∑
µ Dλµfµ and eλ =

∑
µ Dµλhµ.

We have not exploited completely the formulas that we have derived for the coefficient of
en in the hλ basis. We can use this formula to give a rough combinatorial formula for the
coefficient of hλ in the expansion of eµ. By the solution to exercise 1.9, we know that

(2.37) en =
∑
λ`n

(−1)n−`(λ) `(λ)!∏
i mi(λ)!

hλ.
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This implies that

(2.38) eµ =

`(µ)∏
i=1

∑
ν`µi

(−1)µi−`(ν) `(ν)!∏
i mi(ν)!

hν .

Now in order to take the coefficient of hλ in this equation we say that there will be a
contribution to the coefficient of hλ for every sequence of partitions (ν(1), ν(2), . . . , ν(`(µ)))
such that ν(1) ] ν(2) ] . . . ] ν(`(µ)) = λ and ν(i) ` µi. We can see immediately that the sign

of eµ

∣∣∣
hλ

is simply (−1)n−`(λ) because the sign of each contribution to the coefficient of hλ in

the product is always
∏`(µ)

i=1 (−1)µi−`(ν(i)) = (−1)|µ|−`(λ). The contribution for each sequence
(ν(1), ν(2), . . . , ν(`(µ))) which satisfies these conditions is

(2.39)

`(µ)∏
i=1

`(ν(i))!∏ν
(i)
1

j=1 mj(ν(i))!

This implies the following proposition.

Proposition 2.12.

(2.40)
eµ =

∑
λ`|µ| Dλµhλ hµ =

∑
λ`|µ| Dλµeλ

mµ =
∑

λ`|µ| Dµλfλ fµ =
∑

λ`|µ| Dµλmλ

where

(2.41) Dλµ = (−1)|µ|−`(λ)
∑

(ν(1),ν(2),...,ν(`(µ)))

`(µ)∏
i=1

`(ν(i))!∏ν
(i)
1

j=1 mj(ν(i))!

is the sum over all sequences of partitions such that ν(1)]ν(2)] . . .]ν(`(µ)) = λ and ν(i) ` µi.

The formula for Dλµ is very similar to that for the coefficient of hλ in pµ, an explicit formula
for these coefficients was calculated in exercise (1.11). These coefficients also appear in the
expansion of the the monomial and forgotten bases in terms of the power basis.

Proposition 2.13.

pµ =
∑
λ`|µ|

Eλµhλ pµ = (−1)|µ|−`(µ)
∑
λ`|µ|

Eλµeλ

mµ =
∑
λ`|µ|

Eµλpλ/zλ fµ =
∑
λ`|µ|

(−1)|λ|−`(λ)Eµλpλ/zλ

with

Eλµ = (−1)`(λ)−`(µ)
∑

(ν(1),ν(2),...,ν(`(µ)))

`(µ)∏
i=1

µi(`(ν
(i))− 1)!∏

j≥1 mj(ν(i))!

where the sum is over all sequences of partitions with ν(i) ` µi and ν(1)]ν(2)]· · ·]ν(`(µ)) = λ.

Proof. The justification of the expansion of pµ in the homogeneous basis is exercise
(1.10) and (1.11) from the previous chapter. An application of ω to this formula justifies the
expansion of pµ in the elementary basis.
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Now to show the expansion of the monomial basis in the power basis, we recall that for µ ` n

mµ =
∑
ν`n

〈mµ, pλ〉 pλ/zλ

=
∑
ν`n

〈
mµ,

∑
ν`n

Eνλhν

〉
pλ/zλ

=
∑
ν`n

Eµλpλ/zλ

The expansion of the forgotten basis in terms of the power basis also follows by an application
of the involution ω on the previous formula. �

We should note that the only one of these formulas where the coefficients all have the same
sign is the expansion of fµ in the power sum basis. The coefficients of pλ will be positive (or
0) if |µ|+ `(µ) is even and negative otherwise.

Example 13. We will give an example of a computation of the expansion of e(421) and p(421)

in the homogeneous basis. The sum is over the same set of objects so it is easy to both of
the computations at the same time.

Each of the following pictures represents how to divide the partition λ in to sub-partitions
(ν(1), ν(2), ν(3)) such that ν(1) ` 4, ν(2) ` 2 and ν(3) ` 1. For each of these tableaux we will
count each with a weight.

3
2
2
1
1
1
1

3
2
2
1
1
1 1

3
1
1
1
1
2 2

3
2
2
1
1 1 1

3
2
2
1 1
1 1

3
1
1
2 2
1 1

3
2 2
1 1
1 1

3
1
2 2
1 1 1

3
2
2
1 1 1 1

3
2 2
1 1 1 1

Now in order to expand e(421) in terms of hλ we count each of these tableaux with the weight

(−1)7−`(λ)

3∏
i=1

`(ν(i))!∏
j≥1 mj(ν(i))!

,

where ν(i) is the partition whose rows are labeled with i. This implies that

e(421) = h(421) − h(413) − 2 h(3211) + 2 h(314) − h(231) + 4 h(2213)

− 4 h(215) + h(17)

In order to expand p(421) in terms of hλ, we weight each of the tableaux listed above with
the coefficient

(−1)3−`(λ)4 · 2 · 1
3∏

i=1

(`(ν(i))− 1)!∏
j≥1 mj(ν(i))!

.

p(421) = 8 h(421) − 4 h(413) − 8 h(3211) + 4 h(314) − 4 h(231) + 10 h(2213)

− 6 h(215) + h(17)
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From the previous discussion we have determined a formula or combinatorial interpreta-
tion for the coefficient of every one of the 5 bases in every other one of the 5 bases. The
coefficients Aλµ, Bλµ and Cλµ can be found in Proposition 1.10 and Corollary 1.11. A for-
mula/combinatorial interpretation for the coefficients Dλµ is in Proposition 1.12 and the
preceding discussion and Eλµ is in Proposition 1.13. From these definitions we have the
following table for the coefficient of bλ in aµ where aµ represents the entry down the left side
of the table and bλ represents the label across the top of the table.

pλ hλ eλ mλ fλ

pµ δλµ Eλµ (−1)|µ|−`(µ)Eλµ Cλµ (−1)|µ|−`(µ)Cλµ

hµ Cµλ/zλ δλµ Dλµ Aλµ Bλµ

eµ (−1)|λ|−`(λ)Cµλ/zλ Dλµ δλµ Bλµ Aλµ

mµ Eµλ/zλ Fλµ Gλµ δλµ Dµλ

fµ (−1)|λ|−`(λ)Eµλ/zλ Gλµ Fλµ Dµλ δλµ

This leaves two coefficients that we have not yet determined, Fλµ and Gλµ, we leave it as an
exercise to determine some sort of formula for these coefficients. For a more detailed account
of the combinatorial interpretation of change of basis coefficients see [3].

2.2. Algebra operations and sets of variables

The notation that we have introduced allows us to express the operations of our Hopf algebra
and bialgebra that we have already discussed as addition, subtraction and multiplication of
alphabets.

Notice that pk[X + Y ] = pk[X] + pk[Y ] while ∆(pk) = pk ⊗ 1 + 1 ⊗ pk. Because we have
defined pλ[X +Y ] =

∏
i pλi

[X +Y ] =
∏

i(pλi
[X]+pλi

[Y ]). It then follows that the coefficient
of pµ[X]pν [Y ] in pλ[X + Y ] is equal to the coefficient of pµ ⊗ pν in ∆(pλ). More generally it
follows that that if ∆(f) =

∑
i fi ⊗ gi, then f [X + Y ] =

∑
i fi[X]gi[Y ]..

This means that there is a clear isomorphism between Λ ⊗ Λ and ΛX+Y , that is, a basis
element pλ[X]pµ[Y ] of ΛX+Y is isomorphic to the basis element pλ ⊗ pµ ∈ Λ ⊗ Λ. More
generally, an element of ΛX+Y

∑
i fi[X]gi[Y ] is isomorphic to

∑
i fi ⊗ gi. That means that

addition of two sets of variables encodes the coproduct ∆ which we express in the following
proposition.

Proposition 2.14. Given f ∈ Λ such that ∆(f) is given by ∆(f) =
∑

i fi ⊗ gi, then

(2.42) f [X + Y ] =
∑

i

fi[X]gi[Y ].

Moreover, if {aλ}λ and {bλ}λ are dual bases for Λ, then for all f ∈ Λ

(2.43) f [X + Y ] =
∑
k≥0

∑
λ`k

(a⊥λ f)[X]bλ[Y ]
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Proof. We know that for f = pλ we see that

pλ[X + Y ] =

`(λ)∏
i=1

(pλi
[X] + pλi

[Y ])

=
∑

S⊆{1,...,`(λ)}

∏
i∈S

pλi
[X]

∏
i/∈S

pλi
[Y ](2.44)

=
∑
k≥0

∑
µ`k

(
p⊥µ
zµ

pλ

)
[X]pµ[Y ]

Now for f =
∑

λ cλpλ we have that

f [X + Y ] =
∑

λ

cλpλ[X + Y ]

=
∑

λ

cλ

∑
k≥0

∑
µ`k

(
p⊥µ
zµ

pλ

)
[X]pµ[Y ](2.45)

=
∑
k≥0

∑
µ`k

∑
λ

cλ

(
p⊥µ
zµ

pλ

)
[X]pµ[Y ]

=
∑
k≥0

∑
µ`k

(
p⊥µ
zµ

f

)
[X]pµ[Y ]

Now that we know that (1.43) holds for aλ = pλ/zλ and bλ = pλ, we show more generally
that

f [X + Y ] =
∑
k≥0

∑
µ`k

∑
ν`k

(
p⊥µ
zµ

f

)
[X] < pµ, aν > bν [Y ]

=
∑
k≥0

∑
ν`k

∑
µ`k

(
< pµ, aν >

p⊥µ
zµ

f

)
[X]bν [Y ](2.46)

=
∑
k≥0

∑
ν`k

(
a⊥ν f

)
[X]bν [Y ].

�

Subtraction of variables is equivalent to addition of a negative set of variables and a symmet-
ric function evaluated at a negative set of variables is equal to an application of the antipode
map.

Proposition 2.15. For f ∈ Λ such that f is homogeneous of degree k

(2.47) f [−X] = S(f)[X] = (−1)kω(f)[X]

Proof. Recall that S(pk) = −pk = (−1)kω(pk) and S(pλ) = (−1)`(λ)pλ = (−1)|λ|−`(λ)pλ.
We also have pλ[−X] = (−1)`(λ)pλ[X] = S(pλ)[X]. This means that for f =

∑
λ`k cλpλ for
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some coefficients cλ,

f [−X] =
∑
λ`k

cλpλ[−X] =
∑
λ`k

cλS(pλ)[X] = S(f)[X].

�

Remark 5. We can encode the antipode map S which is much like the involution ω, but
not quite the same since it is off by −1 raised to the degree of the symmetric function it is
acting on. It is possible to introduce notation which eliminates the sign. To this end one
may introduce a variable q and at the end of the calculation set q = −1. This will be denoted
ε. That is, for f ∈ Λ, f homogeneous of degree k

f [−εX] = (−1)kω(f)[qX]
∣∣∣
q=−1

= (−1)kqkω(f)[X]
∣∣∣
q=−1

= ω(f)[X].

Note that ε is very different from −1 because it is a variable. This notation is more useful
when working with non-homogeneous symmetric functions since it allows us to encode the
involution ω without referring to the degree of the symmetric function. We will not use this
notation here.

Using this notation we can see multiplication as an operation that maps ΛX+Y to ΛX by
setting the Y variables equal to the X variables. This can be seen since µ(f ⊗ g) = f · g
while at the same time f [X]g[Y ]

∣∣∣
Y =X

= f [X]g[X] = (f · g)[X]. This means that we will be

representing multiplication by the symbol
∣∣∣
Y =X

which acts on the expression that lies to the

left of this symbol by changing the Y variables to the X variables.

This notation implies that we have already computed such expressions as hm[X +Y ] since we
have already computed that ∆(hm) =

∑
i hi ⊗ hm−i in Proposition 1.15. Using the previous

remark, this means hm[X + Y ] =
∑m

i=0 hi[X]hm−i[Y ], and similarly that em[X + Y ] =∑m
i=0 ei[X]em−i[Y ].

Notice that for any f, g ∈ Λ,

(2.48) 〈g[X + Y ], f [Y ]〉 = (f⊥g)[X].

This is perhaps an unusual means for computing f⊥g, but it is important interpretation of
the operation f [X + Y ]. We may also use this operation to compute specific operators f⊥.

Proposition 2.16. For k ∈ Z and f ∈ Λ,

(2.49) h⊥k f [X] = f [X + z]
∣∣∣
zk

(2.50) e⊥k f [X] = f [X − z]
∣∣∣
zk

(−1)k

Proof. The first identity follows from equation (1.43),

(2.51) f [X + z] =
∑

λ

(
h⊥λ f

)
[X]mλ[z]
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all terms of this sum are 0 unless λ has exactly one part. The coefficient of zk in this equation
will be (h⊥k f)[X].

This same argument using the dual bases {eλ}λ and {fλ}λ and the relation fλ[−z] =
(−1)|λ|mλ[z] shows that

(2.52) f [X − z] =
∑

λ

(
e⊥λ f

)
[X]fλ[−z] =

∑
λ

(−1)|λ|
(
e⊥λ f

)
[X]mλ[z].

The coefficient of zk in this equation will be (−1)k(e⊥k f)[X]. �

This last proposition implies that

(2.53) f [X + z] =
∑
k≥0

zk(h⊥k f)[X] = Ω[zX]⊥f [X]

where by Ω[zX]⊥ is the operator which is dual to multiplication by the series Ω[zX] with
respect to the scalar product in the X variables. As a manipulation, we know then for any
two symmetric functions f, g ∈ Λ,

(2.54) 〈f [X], g[X + z]〉 = 〈Ω[zX]f [X], g[X]〉 .

The defining relation of the antipode, µ ◦ (id ⊗ S) ◦ ∆ = u ◦ ε can easily be seen in this
notation.

µ ◦ (id⊗ S) ◦∆(f)[X] = µ ◦ (idXSY )f [X + Y ]

= µf [X − Y ] = f [X −X] = f [0](2.55)

This means that u ◦ ε(f)[X] = f [0], but this was something that we already knew since

u ◦ ε(f) = f
∣∣∣
pk=0

.

Similarly, because we have that pk[XY ] = pk[X]pk[Y ] then just by the definition pλ[XY ] =
pλ[X]pλ[Y ]. Comparing this to ∆′(pλ) = pλ⊗pλ, it follows that again the coefficient of pµ⊗pν

in ∆′(pλ) is equal to the coefficient of pµ[X]pν [Y ] in pλ[XY ] (that is, they are both equal to
δµλδνλ). More generally this shows that if ∆′(f) =

∑
i fi ⊗ gi, then f [XY ] =

∑
i fi[X]gi[Y ].

This means that the coproduct ∆′ is encoded in the multiplication of two sets of variables
in the sense of the following propostion.

Proposition 2.17. For any symmetric function f inΛ, if ∆′(f) =
∑

i fi ⊗ gi, then

(2.56) f [XY ] =
∑

i

fi[X]gi[Y ].

Moreover for any dual bases {aλ}λ and {bλ}λ, we have that

(2.57) f [XY ] =
∑
k≥0

∑
λ`k

(aλ ∗ f)[X]bλ[Y ].
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Proof. We have yet to show (1.57) which we know will hold for f = pλ aµ = pµ/zµ and
bµ = pµ since

(2.58) pλ[XY ] = pλ[X]pλ[Y ] =
∑

µ

(
pµ

zµ

∗ pλ

)
[X]pµ[Y ]

since all but one term of this sum is equal to 0. More generally, if f =
∑

λ cλpλ and {aλ}λ

and {bλ}λ are any pair of dual bases, then

f [XY ] =
∑

λ

∑
µ

cλ

(
pµ

zµ

∗ pλ

)
[X]pµ[Y ]

=
∑

λ

∑
µ

∑
ν

cλ

(
pµ

zµ

∗ pλ

)
[X] 〈pµ, aν〉 bν [Y ](2.59)

=
∑

λ

∑
ν

∑
µ

cλ

(
〈pµ, aν〉

pµ

zµ

∗ pλ

)
[X]bν [Y ]

=
∑

ν

(aν ∗ f) [X]bν [Y ]

�

2.3. Application: Coloring enumeration

Starting with a figure like the one below, we can ask how many distinct ways there are of
coloring the regions of the figure with k colors. If the figure is fixed in place and not allowed
to move the answer is simply k8 since there are 8 regions and each region can be colored
independently with one of k different colors.

Figure 14. A square figure with 8 regions.

Now allow a group of isometries to act on the figure and say that two colorings are equal
if there is some group element that transforms one to the other. With this condition there
must be fewer than k8 colorings because some of the k8 colorings are now the equal. For
instance, if we allow the group of four rotations to act on this figure then the following 4
colorings will be equivalent.
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In general, to count the colorings we cannot simply divide by four since not all colorings will
have the same order in their symmetry. In fact we will show that the number of colorings
of figure 10 with k colors and this group of isometries acting on it is 1

4
(k8 + 2k2 + k4),

something that is difficult to do with a simple counting argument.

A more general problem is to count the number of ways of coloring a figure like the one in
figure 10 with a1 regions blue, a2 regions red, a3 regions green, etc. such that a1+a2+a3+· · ·
is equal to the number of regions. For example to color figure 10 with 6 blue regions and
2 green regions it is not difficult to determine that there are 8 distinct colorings like those
given below. We wish to approach this problem in a general setting and give a formula for
these enumerations.

It turns out that both of these types of problems can be solved using symmetric functions and
the link between enumerating colorings and symmetric polynomials is a generating function
for the number of colorings. Notice that if we assign a monomial weight w(c) to each possible
coloring c of a figure where w(c) is x1 raised to the number times the first color appears,
x2 to the number of times the second color appears, etc., then the sum over all possible
colorings of w(c) will be symmetric in the variables xi and hence this expression will be a
symmetric polynomial.

To begin we introduce some notation. A group action of a group G on a set R of regions to
be colored satisfying the following properties:

(1) For the identity element e ∈ G, e(r) = r for r ∈ R.
(2) For g1, g2 ∈ G, g1(g2(r)) = (g1 · g2)(r) for all r ∈ R.
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Now the elements g ∈ G act on the set R and permute the elements. The cycle type of G
when it acts on R will be denoted by λR(g) and is equal to the cycle type of the following
permutation: (

r1 r2 · · · rn

g(r1) g(r2) · · · g(rn)

)
.

Define the cycle index symmetric function of a group G acting on a set R will be denoted

(2.60) CG
R =

1

|G|
∑
g∈G

pλR(g)

and it is a symmetric function of degree equal to the number of elements of R.

Example 15. Let G = C4 be the cyclic group of permutations which rotate figure 10. That
is, there are four elements of this group C4 = {e, r, r2, r3} where r4 = e and r acting on
this figure is a rotation by 90 degrees. There are 8 regions of this figure to be colored and
λR(e) = (18), λR(r) = λR(r3) = (4, 4), and λR(r2) = (2, 2, 2, 2). Therefore

CC4
R =

1

4

(
p8

1 + 2p2
4 + p4

2

)
.

Example 16. Let G = D4 be the group of rotations and reflections acting on figure 10. This
time there are 8 elements in the group, D4 = {e, r, r2, r3, s, sr, sr2, sr3} where r4 = e and
s2 = e and sr = r3s. r acting on this figure is again a rotation by 90, s will be a flip across the
horizontal passing through the center of the figure. We have already calculated the cycle type
of the elements e, r, r2, r3 and we also have λR(s) = λR(sr) = λR(sr2) = λR(sr3) = (2, 2, 2, 2).
Therefore

CD4
R =

1

8

(
p8

1 + 2p2
4 + 5p4

2

)
.

If we have a group action of G on a set X then the orbit of an element x ∈ X is the set

Orbit(G; x) = {g(x) : g ∈ G}.

We also define the stablilizer of an element x to be the set

Stab(G; x) = {g ∈ G : g(x) = x}.

If g ∈ Stab(G; x) then g−1(x) = g−1(g(x)) = (g−1g)(x) = x and hence g−1 ∈ Stab(G; x). If
g, h ∈ Stab(G; x) then (gh)(x) = g(h(x)) = x and so gh ∈ Stab(G; x) and hence Stab(G; x)
is a subgroup of G. We also have that for g ∈ G, if g(x) = y then g−1(y) = g−1(g(x)) =
(g−1g)(x) = x. The orbit and the stabilizer of an element x are related by the set Orbit(G; x)
is isomorphic to the set of left cosets of Stab(G; x). We show this in the following lemma.

Proposition 2.18. For x ∈ X, we have Orbit(G; x) is isomorphic to the set of left cosets
of Stab(G; x) in G. This implies

|Orbit(G; x)| |Stab(G; x)| = |G| .
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Proof. The correspondence between the orbit and the cosets of the stabilizer simply
sends the element gx to the coset g · Stab(G; x). We show

g · Stab(G; x) = h · Stab(G; x) ⇔ (h−1g) · Stab(G; x) = Stab(G; x)

⇔ h−1g ∈ Stab(G; x)

⇔ (h−1g)(x) = x

⇔ g(x) = h(x).

This shows that the map is onto since for g ∈ G, g(x) = gi(x) for some representative
element gi(x) ∈ Orbit(G; x) and g · Stab(G; x) = gi · Stab(G; x). This also implies that the
map is one-to-one since g(x) = h(x) implies g · Stab(G; x) = h · Stab(G; x). Since the cosets
of Stab(G; x) partition the group G into equal parts and every element is in exactly one
coset, we know that

|Orbit(G; x)| = # cosets of Stab(G; x) in G =
|G|

|Stab(G; x)|
.

�

If we have a finite set X and G acts on X by permuting the elements, then there are a
finite number of sets Orbit(G; c) and every element of X will be in exactly one of the orbits
(the set of orbits forms a partition of the set X). Let m be the number of elements in
{Orbit(G; c) : c ∈ X} and let c1, c2, . . . , cm be representative elements of this set of orbits so
that every c ∈ X is in exactly one set Orbit(G; ci).

Proposition 2.19. If c ∈ Orbit(G; d), then Orbit(G; c) = Orbit(G; d) and consequently
|Stab(G; c)| = |Stab(G; d)|.

Proof. If c ∈ Orbit(G; d) then c = g(d) for some g ∈ G. This mean that

Orbit(G; c) = {h(c) : h ∈ G} = {h(g(d)) : h ∈ G} = Orbit(G; d).

�

For a finite set R of regions, a coloring of R with k colors is a map c : R → {1, 2, . . . k}. If g
acts on R then the definition of g on the coloring c is g(c)(r) = c(g(r)) for r ∈ R (in other
words, a group acts on a coloring of the regions by permuting the regions).

A coloring c will be invariant under the action of a group element g if every r in the same
orbit of g is colored with the same value, that is, if g(r) = r′ then c(r) = c(r′). This implies
that each cycle in the permutation(

r1 r2 · · · rn

g(r1) g(r2) · · · g(rn)

)
may be assigned a value independently. The number of colorings invariant under the action
of the element g ∈ G is equal to k raised to the number of cycles in this permutation or
k`(λR(g)) = pλR(g)[k]. That is, we have

pλR(g)[k] = #{c : R → {1, 2, . . . k}|g(c) = c}.
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This leads us to our first enumeration formula:

Theorem 2.20. (Burnside’s formula) Let R be a set of regions to color and X be the set of
colorings with k colors. Say that the set {Orbit(G; c) : c ∈ X} has order m, then

CG
R [k] = m.

Proof. Let m be the number of elements in {Orbit(G; c) : c ∈ X} and c1, c2, . . . , cm be
a set of representative elements so that every c ∈ X is in exactly one of the sets Orbit(G; ci).

CG
R [k] =

1

|G|
∑
g∈G

pλR(g)[k]

=
1

|G|
∑
g∈G

∑
c∈X

g(c)=c

1

=
1

|G|
∑
c∈X

∑
g∈G

g(c)=c

1

=
1

|G|

m∑
i=1

∑
c∈Orbit(G;ci)

|Stab(G; c)|(2.61)

=
1

|G|

m∑
i=1

∑
c∈Orbit(G;ci)

|Stab(G; ci)|

=
1

|G|

m∑
i=1

|Orbit(G; ci)||Stab(G; ci)|

=
1

|G|

m∑
i=1

|G| = m.

�

Example 17. We computed CC4
R and CD4

R for R equal to the regions in figure 10. Theorem
1.20 says that the number of distinct ways of coloring this figure k colors when the group C4

acts on the figure is 1
4
(k8 + 2k2 + k4) and when D4 acts on the figure is 1

8
(k8 + 2k2 + 5k4).

Let us consider a figure which we can verify by hand very easily that this formula does in
fact work as advertised.

Example 18. How many ways are there of coloring a cube with 2 colors such that two
coloring are considered to be equal if they look the same by a rotation? The natural group
of isometries which acts on this object is the group of rotations which permute the faces,
edges and vertices of the cube.

It helps to have a cube to look at, if you can find a die or a Rubik’s cube the calculations
that we are about to do will seem easier.
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We note that the symmetry group of rotations the cube has 24 elements in it. This is easy
to see because any rotation of the cube moves one of 6 faces to the face which is on top and
then there are 4 choices for the face which is in front. The question is, what are these 24
group elements which act on the cube?

The first element to consider is the identity element. There is only 1 of these.

Next, there are 9 rotations of the cube with two faces left fixed. In the figure below this
corresponds to the rotations about one of the three lines which pass through the center of
the cube perpendicular to exactly two faces.

There are also 6 rotations of the cube by 180 degrees that leave two edges fixed. This
corresponds to a rotation around one of the the six lines in the figure below that pass
through the center of the cube and are perpendicular to two edges.

Finally there are 8 rotations by 120 degrees or 240 degrees around two opposite corners of
the cube. This will be a rotation around one of the four lines in the figure below that pass
through the center of the cube and connect two of the corners.
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Let G be this group of isometries and R be the 6 faces of the cube. Calculating CG
R is as easy

as looking at each of the four types of permutations listed above. By looking at a cube and
noticing what the cycle type of each of these permutations of the faces is we calculate

1

24

(
p6

1 + 6p4p
2
1 + 3p2

2p
2
1 + 6p3

2 + 8p2
3

)
.

Therefore if we wish to know the number of distinct ways of coloring the cube with 2 colors, it
will be 1

24
(26 + 6 · 23 + 3 · 24 + 6 · 23 + 8 · 22) = 10. This number is something we can easily

determine by exhaustively listing the 10 possible colorings. In the figure below we have
folded out flat the 6 faces of the cube and colored them either red or blue.

Example 19. How many distinct ways are there of coloring the following figure with 3 colors
where the group that acts on it is generated by a reflection across the vertical line and a
rotation by 60 degrees?

The group acting on this figure is the dihedral group of order 12 since it is generated
by two elements x, y ∈ D6 satisfying x6 = y2 = e and xy = yx5. This means that
D6 = {e, x, x2, x3, x4, x5, y, yx, yx2, yx3, yx4, yx5}. There are 30 regions in the figure and
are permuted by the elements of this group. We compute the following cycle structures of
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these group elements on the regions of the figure.

λR(e) = (130)

λR(x) = λR(x5) = (65)

λR(x2) = λR(x4) = (310)

λR(x3) = λR(yx) = λR(yx3) = λ(yx5) = (215)

λR(y) = λR(yx2) = λ(yx4) = (214, 12)

These calculations determine

CD6
R =

1

12

(
p30

1 + 2p5
6 + 2p10

3 + 4p15
2 + 3p14

2 p2
1

)
It follows then that the number of ways of coloring this figure with 3 colors is equal to

CD6
R [3] =

1

12

(
330 + 2 · 35 + 2 · 310 + 4 · 315 + 3 · 316

)
= 17157609895752.

Example 20. A simple graph is a set of vertices V (which we shall take as the set =
{1, 2, . . . n}) together with a set of edges E ⊆ {{u, v} : u, v ∈ V and u 6= v}. The symmetric
group acts on V by permuting the vertex set and on edges by σ{u, v} = {σ(u), σ(v)}. In our
context, two graphs (V, E) and (V, E ′) will be isomorphic if there is a permutation σ ∈ Symn

such that σE = E ′.

A simple graph is represented by a set of labeled points and a line between two points u and
v if {u, v} is an edge in E.

We wish to count non-isomorphic simple graphs and this can be done by thinking of a graph
(V, E) as a coloring of the two element subsets Rn = {{i, j} : 1 ≤ i < j ≤ n} with two colors
say white and black. The black edges will represent those which are in E and the white ones
will represent those that are not in E.

This means that CSymn
Rn

will be a symmetric function of degree
(

n
2

)
. Lets compute the number

of non-isomorphic graphs on with 2, 3, 4 and 5 vertices. To determine these symmetric
functions we need to determine the action for each σ on the two element subsets but it is
only necessary to look at one of each cycle type (we will list calculate λR of each of the group
elements listed in cycle notation).

For n = 2, λR2((1)(2)) = (1) and λR2((12)) = (1). Therefore CSym2
R2

= 1
2
(p1 + p1) = p1.

For n = 3, there are 3 two element subsets and λR3((1)(2)(3)) = (1, 1, 1), λR3((12)(3)) =

(2, 1) and λR3((123)) = (3). We have, CSym3
R3

= 1
6

(
p(13) + 3p(2,1) + 2p(3)

)
= h3.

For n = 4, there are 6 two element subsets. λR4((1)(2)(3)(4)) = (16), λR4((12)(3)(4)) =
(2, 2, 1, 1), λR4((12)(34)) = (2, 2, 1, 1), λR4((123)(4)) = (3, 3), λR4((1234)) = (4, 2). The
cycle index symmetric function is

CSym4
R4

=
1

24

(
p(16) + 6p(2,2,1,1) + 3p(2,2,1,1) + 8p(3,3) + 6p(4,2)

)
.
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For n = 5 there are 10 two element subsets. For the most part, the order of the subset
{u, v} will be the l.c.m. of the length of the cycle that u is in and the length of the cycle
that v is in (the exception being the sets {1, 3} and {2, 4} under the action of the element
(1234)(5)). λR5((1)(2)(3)(4)(5)) = (110), λR5((12)(3)(4)(5)) = (23, 14), λR5((12)(34)(5)) =
(24, 1, 1), λR5((123)(4)(5)) = (33, 1), λR5((123)(45)) = (6, 3, 1), λR5((1234)(5)) = (4, 4, 2),
λR5((12345)) = (5, 5).

CSym5
R5

=
1

120

(
p(110) + 10p(23,14) + 15p(24,1,1) + 20p(33,1) + 20p(6,3,1) + 30p(4,4,2) + 24p(5,5)

)
.

Now that we have the cycle index symmetric functions, it is quite easy to determine the
number of non-isomorphic simple graphs there are, we just evaluate them at the value 2.
This means that there are CSym2

R2
[2] = 2 graphs on two vertices, CSym3

R3
[2] = 4 graphs on three

vertices, CSym4
R4

[2] = 11 graphs on four vertices, and CSym5
R5

[2] = 34 graphs on five vertices.
Each of these values are not too difficult to verify by hand so we draw the sets of graphs
below to see that they agree with the theory.
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We turn our attention now to a more specific type of enumeration problem, that of counting
the number of ways of coloring a figure using a prescribed number of colors. We gave an
example of such a question when above when we posed the question how many ways the
figure 10 could be colored with 6 blue regions and 2 green regions.

Let G be a group with an action on a set of regions R. For any coloring c : R → N, we call the

weight function the map w with w(c) =
∏|R|

i=1 xc(ri) where the ri are the elements of R listed
in some order (since our variables commute this expression is independent of the order). The
weight function sends a coloring to a monomial in Q[x1, x2, x3, . . .] The generating function∑

c w(c) where the sum is over all distinct colorings of R under the group G is called the
pattern inventory.

The pattern inventory is a generating function which contains all the information necessary
to count the number of patterns with given number of colors appearing, we need only take
a coefficient in this generating function of xa1

1 xa2
2 xa3

3 · · · to find the number of colorings with
color 1 appearing a1 times, color 2 appearing a2 times, color 3 appearing a3 times, etc.

This generating function also encodes the total number of colorings using k colors. We can
recover the information by setting x1 = x2 = · · · = xk = 1 and xk+1 = xk+2 = · · · = 0. This
give a clue to identifying the formula for the pattern inventory.
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Theorem 2.21. (Pòlya’s theorem) Let G be a group which acts on a set R and let C be a
set of colorings mapping R to the set N which are all distinct under the action of G.

CG
R [X] =

∑
c∈C

w(c).

Proof. This means �

2.4. Exercises:

(1) Show

ek [[n]q] = q(
k
2)
[
n

k

]
q

where [n]q = 1−qn

1−q
, [n]q! = [n]q[n− 1]q · · · [1]q and

[
n
k

]
q

= [n]q !

[n−k]q ![k]q !
.

(2) Show

hk [[n]q] =

[
n + k − 1

k

]
q

.

(3) Show

pk [[n]q] =
[nk]q
[k]q

.

(4) Show directly (without appealing to a formula which we have derived for these
values) that the coefficient of mν in mλmµ will be the same as the coefficient of
hλ ⊗ hµ in the expression ∆(hν).

(5) Show that ek[X − z] =
∑k

i=0(−z)iek−i[X] and hk[X − z] = hk[X]− zhk[X].
(6) Show Ω ∗ f = f ∗ Ω = f for all f ∈ Λ.

(7) Show that Ω
[

x−y
1−q

]
=
∏

i≥0
1−xqi

1−yqi .

(8) Show that if f(Xn) is in the linear span of the symmetric polynomials mλ[Xn] over
Z then when it is expressed in the {eλ[Xn]}λ1≤n basis it has coefficients in Z and
when it is expressed in the {hλ[Xn]}λ1≤n basis it has coefficients in Z. Show that in
general if it is expressed in the {pλ[Xn]}λ1≤n basis the coefficients will be in Q.

(9) Show that

〈hµ, eλ′〉

 > 0 if µ < λ
= 1 if λ = µ
= 0 otherwise.

(10) Determine some sort of formula for the coefficient of hλ in mµ and the coefficient
of eλ in mµ in terms of the other coefficients which we have already determined a
formula.
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[5] F. Franklin, Sur le développement du produit infini (1 − x)(1 − x2)(1 − x3) · · · , Comptes Rendus, 82

(1881).
[6] E. Grosswald, Topics in the Theory of Numbers, Macmillan, New York, 1966; Birkhäuser, Boston, 1983.
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