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Abstract. A development of the symmetric functions using the plethystic notation.



CHAPTER 1

The Littlewood-Richardson Rule

We started by developing the symmetric functions and developed three different ‘multiplica-
tion’ operations: product, the Kronecker or inner product and plethysm. These were defined
on the power basis because there they are the easiest to state and understand.

pλ · pµ = pλ]µ

pλ

zλ

∗ pµ

zµ

=
pν

zν

pλ ◦ pµ =

`(λ)∏
i=1

p(λiµ1,λiµ2,...,λiµ`(λ))

Each of these operations have an interpretation in terms of representation theory that makes
them a curious object to study in the theory of symmetric functions. The definition of these
operations leads to three natural questions that arise. What is the coefficient of sν in the
expression sλ � sµ where � is one of the operations ·, ∗ or ◦. This means that we are
looking for some expression/formula/combinatorial interpretation/ algorithm or method of
computation for the following three expressions:

(1.1) 〈sλsµ, sν〉 , 〈sλ ∗ sµ, sν〉 , 〈sλ ◦ sµ, sν〉 .

Since we have developed means of expanding the Schur function in terms of the power basis
in equations (??), a formula for each of these expressions can be found by expanding the
Schur functions in the expressions above and giving an expression for these quantities in
terms of sums of expressions involving the coefficients χµ(λ). This is our starting point for
each of these coefficients. This formula however is fairly unsatisfactory because it does little
to explain why the coefficients are positive integers or what they might represent.

A goal of exposition will be to arrive at a ‘satisfactory’ explanation for the coefficients above.

One of the most important aspects of the Schur functions are the coefficients which appear
when a product of two Schur functions are again expanded in the Schur basis.

Example 1. We may compute the product s(21)s(32) by expanding these Schur functions in
terms of the homogeneous basis and then converting this expression into the back into the
Schur basis by computing the Schur functions of degree 8 which appear in this expression.
We find that

s(21)s(32) = s(53) + s(521) + s(44) + 2 s(431) + s(422)

+ s(4211) + s(332) + s(3311) + s(3221)
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It is not obvious from the method which we used to compute this expansion that the co-
efficients which appear should be non-negative integers. This is a property which always
occurs in the expansion of a product of Schur functions and the purpose of this section will
be to arrive at a combinatorial rule for computing each coefficient. This combinatorial rule
is known as the Littlewood-Richardson rule.

The coefficient of sµ in the product of Schur functions sλ and sν is typically denoted as cµ
λν ,

that is,

(1.2) sλsν =
∑

µ`|λ|+|ν|

cµ
λνsµ.

This means that cµ
λν = 〈sλsν , sµ〉 and by the definition of s⊥λ this means as well that cµ

λν =〈
sν , s

⊥
λ sµ

〉
and hence

(1.3) s⊥λ sµ =
∑

ν`|µ|−|λ|

cµ
λνsν

Since the product of two Schur functions is commutative, we note that it must be the case

that cµ
λν = cµ

νλ and since ω(sλ) = sλ′ then it follows that cµ′

λ′ν′ = cµ
λν since 〈sλ′sν′ , sµ′〉 =

〈ω(sλsν), ω(sµ)〉 = 〈sλsν , sµ〉. We also note that cµ
λν is non-zero only if |µ| = |λ| + |ν|.

To begin with, we will derive a combinatorial rule for computing the coefficient cµ
λν . This

rule is not the Littlewood-Richardson rule, but is instead a precursor since will be a sum
which contains negative components and we will arrive at the Littlewood-Richardson rule
by refining this combinatorial procedure.

Proposition 1.1.

(1.4) s⊥λ sµ =
∑

T∈CSTλ

sµ−n(T )

where the sum is over all column strict tableau of shape λ and with cells labeled with entries
in {1, 2, . . . , `(µ)} and n(T ) = (n1(T ), n2(T ), . . . , n`(µ)(T )) where ni(T ) is the number of cells
in T labeled with an i.
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Proof. Recall that by definition (??) we know that sµ[X] = Ω[XZn]
∏

1≤i<j≤n(1 −
zi/zj)

∣∣∣
zµ

. Since we have in general that (g⊥f)[X] = 〈g[Y ], f [X + Y ]〉 then

(s⊥λ sµ)[X] =

〈
sλ[Y ], Ω[(X + Y )Zn]

∏
1≤i<j≤n

(1 − zi/zj)
∣∣∣
zµ

〉
Y

= 〈sλ[Y ], Ω[Y Zn]〉Y Ω[XZn]
∏

1≤i<j≤n

(1 − zi/zj)
∣∣∣
zµ

= sλ[Zn]Ω[XZn]
∏

1≤i<j≤n

(1 − zi/zj)
∣∣∣
zµ

(1.5)

=
∑

T∈CSTλ

zn(T )
n Ω[XZn]

∏
1≤i<j≤n

(1 − zi/zj)
∣∣∣
zµ

=
∑

T∈CSTλ

sµ−n(T )[X]

This last equality follows by using the extended definition of the Schur functions indexed by
a composition since as we remarked in the proof of the equivalence of definitions (??), (??)
and (??) that this relation holds for Schur functions indexed by an arbitrary sequence. �

Although it seems like this is a sum over a positive set of objects, µ − ni(T ) is not always a
partitions and hence some of the terms in the sum could be negative when expanded in the
Schur basis. We will give an example to demonstrate this combinatorial formula.

Example 2. Let us show how this equation can be used to compute the expression s⊥(21)s(442).
The formula says that there is one term in this sum for each column strict tableau of shape
(2, 1) with labels in the set {1, 2, 3}. Below we list all 8 tableau as well as the composition
of integers representing the content and the Schur function indexed by (4, 4, 2) minus the
content composition.

2
1 1

3
1 1

2
1 2

3
1 3

(2, 1, 0) (2, 0, 1) (1, 2, 0) (1, 0, 2)
s(232) = 0 s(241) = −s(331) s(322) s(340) = 0

3
2 2

3
2 3

3
1 2

2
1 3

(0, 2, 1) (0, 1, 2) (1, 1, 1) (1, 1, 1)
s(421) s(430) = s(43) s(331) s(331)

This implies that the Schur function expansion of s⊥(21)s(442) is given by s(322) +s(421) +s(43) +
s(331).

Notice that the one term that represents a negative Schur function when indexed by a
partition in this example cancels with one of the two terms coming from the tableaux of
content (1, 1, 1). It is not clear from the way that we have presented this example which
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terms survive in this sum but add an additional combinatorial element and we will be able
to identify exactly what the terms are which survive.

For a partition µ and a column strict tableau T we define the recording diagram for T with
respect to the partition µ which we will denote by Rµ(T ). Rµ(T ) will have ni(T ) cells in the
ith row and these cells will be right justified so that the rightmost cell lies in the µth

i column
of the diagram (we will allow these cells to trickle into the (−x, +y)-quadrant if necessary).
In the ith row the cells will be labeled in increasing order and will contain a label k for each
label i in the kth row of the tableau T .

This is best demonstrated with a few examples.

Example 3.

R(5,4,3)

(
2 3
1 1 3

)
=

1 2
2
1 1

R(2,2,2)

(
2 3
1 1 3

)
=

1 2
2

1 1

R(4,3,3,1)

 4 4
2 3
1 2 2

 =

3 3
2

1 1 2
1

The Littlewood-Richardson rule can now be stated as follows.

Theorem 1.2. cµ
λν is the number of column strict tableaux of shape λ such that Rµ(T ) is a

column strict tableau of shape µ/ν.

Before we proceed with the proof we will give a second example of a computation with
equation (??) and this time we will list all of the column strict tableaux as well as the
recording tableau to demonstrate that the Littlewood-Richardson rule works as advertised.

Example 4. As an example we will compute s⊥(221)s(4332). There are 20 tableaux of shape

(2, 2, 1) with content in the labels {1, 2, 3, 4, 5}.

3
2 2
1 1

4
2 2
1 1

3
2 3
1 1

4
2 4
1 1

3
2 3
1 2

3
2 2

1 1

3

2 2
1 1

2 3
2
1 1

2 3

2
1 1

2 3
1 2

1
s(2122) = 0 s(2131) = −s(2221) s(2212) = 0 s(2230) = 0 s(3112) = 0
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4
2 4
1 2

4
3 4
1 1

4
3 3
1 1

4
3 4
2 2

4
2 3
1 1

2 3

1 2
1

2 3
2

1 1

3
2 2

1 1

2 3
2

1 1

3
2
2
1 1

s(3130) = −s(322) s(2320) = 0 s(2311) = 0 s(4120) = 0 s(2221)

4
2 3
1 2

3
2 4
1 2

4
2 4
1 3

4
3 4
1 3

4
3 3
2 2

3
2

1 2
1

2
3

1 2
1

2 3
1
2

1

2 3
1 2

1

3
2 2
1 1

s(3121) = 0 s(3121) = 0 s(3220) = s(322) s(3310) = s(331) s(4111)

4
3 4
2 3

3
2 4
1 1

4
3 3
1 2

3
2 4
1 3

4
3 4
1 2

2 3
1 2

1

2
3
2
1 1

3
2 2

1
1

2
1 3

2
1

2 3
2
1

1
s(3310) = s(331) s(4111) s(2221) s(3211) s(3220) = s(322)

There are two terms in this collection with negative weight and two terms with positive
weight such that R(4332)(T ) is not a column strict tableau and these negative and positive
terms cancel. 9 of the 20 terms in this sum have 0 weight and the only terms which survive
are those such that R(4332)(T ) is a skew column strict tableau. This calculation shows that

s⊥(221)s(4332) = s(421) + s(4111) + s(331) + s(322) + 2s(3211) + s(2221)


