List of Exercises

Exercise 1 Check if the following sets are ideals:

1. $S_{1}=\left\{p\left(x^{2}\right) \mid p(x) \in \mathbb{C}[x]\right\}$

Polynomials in $\mathbb{C}[x]$ with only even exponents
2. $S_{2}=\{p(x, y) \in \mathbb{C}[x, y] \mid p(0,0)=0\}$

Polynomials whose total degree is greater than zero.
3. $S_{3}=\{p(x, y) \in \mathbb{C}[x, y] \mid p(0, y)=0\}$

Polynomials whose degree in x is greater than zero.
4. $S_{4}=\left\{p\left(x_{1}, \ldots, x_{n-1}\right) \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]\right\}$

Polynomials in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ which do not depend on x_{n}.
Exercise 2 Prove that the intersection of two ideals is always an ideal. When is the union of two ideals an ideal?

Exercise 3 Let I_{1}, I_{2} be ideals of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and $f_{1}, f_{2} \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Prove that the set $\left\{g_{1} f_{1}+g_{2} f_{2} \mid g_{1} \in I_{1}, g_{2} \in I_{2}\right\}$ is an ideal.

Exercise 4 Let e_{1}, \ldots, e_{n} be a basis of a vector space V and let $\phi_{1}, \ldots, \phi_{n}$ be the dual basis i.e.

$$
\phi_{i}\left(e_{j}\right)=\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { otherwise }\end{cases}
$$

i) Prove that $\phi_{i} \wedge \phi_{j}, 1 \leq i<j \leq n$ is a basis of $\bigwedge^{2}\left(V^{*}\right)$.

Hint: Prove that for each exterior two form ω one has

$$
\omega=\sum_{1 \leq i<j \leq n} \omega\left(e_{i}, e_{j}\right) \phi_{i} \wedge \phi_{j}
$$

and that $\phi_{i} \wedge \phi_{j}, 1 \leq i<j \leq n$ are linearly independent.
ii) Prove that $\phi_{i_{1}} \wedge \ldots \wedge \phi_{i_{k}}, 1 \leq i_{1}<\ldots<i_{k} \leq n$ is a basis of $\bigwedge^{k}\left(V^{*}\right)$.

Exercise 5 Let $v_{1}, v_{2} \in \mathbb{R}^{4}$ be linearly independent. Prove that $v_{1} \wedge v_{2}=$ $\rho w_{1} \wedge w_{2}$ with $\rho \in \mathbb{R}^{*}$ if and only if w_{1} and w_{2} span the same subspace as v_{1} and v_{2}.

