List of Exercises

Exercise 1 Check if the following sets are ideals:

- 1. $S_1 = \{p(x^2) | p(x) \in \mathbb{C}[x]\}$ Polynomials in $\mathbb{C}[x]$ with only even exponents
- 2. $S_2 = \{p(x, y) \in \mathbb{C}[x, y] | p(0, 0) = 0\}$ Polynomials whose total degree is greater than zero.
- 3. $S_3 = \{p(x, y) \in \mathbb{C}[x, y] | p(0, y) = 0\}$ Polynomials whose degree in x is greater than zero.
- 4. $S_4 = \{p(x_1, \dots, x_{n-1}) \in \mathbb{C}[x_1, \dots, x_n]\}$ Polynomials in $\mathbb{C}[x_1, \dots, x_n]$ which do not depend on x_n .

Exercise 2 Prove that the intersection of two ideals is always an ideal. When is the union of two ideals an ideal?

Exercise 3 Let I_1, I_2 be ideals of $\mathbb{C}[x_1, \ldots, x_n]$ and $f_1, f_2 \in \mathbb{C}[x_1, \ldots, x_n]$. Prove that the set $\{g_1f_1 + g_2f_2|g_1 \in I_1, g_2 \in I_2\}$ is an ideal.

Exercise 4 Let e_1, \ldots, e_n be a basis of a vector space V and let ϕ_1, \ldots, ϕ_n be the dual basis i.e.

$$\phi_i(e_j) = \delta_{ij} = \begin{cases} 1 & if \quad i = j \\ 0 & otherwise \end{cases}$$

i) Prove that $\phi_i \wedge \phi_j$, $1 \le i < j \le n$ is a basis of $\bigwedge^2(V^*)$.

Hint: Prove that for each exterior two form ω one has

$$\omega = \sum_{1 \le i < j \le n} \omega(e_i, e_j) \phi_i \wedge \phi_j$$

and that $\phi_i \wedge \phi_j$, $1 \leq i < j \leq n$ are linearly independent.

ii) Prove that $\phi_{i_1} \wedge \ldots \wedge \phi_{i_k}$, $1 \leq i_1 < \ldots < i_k \leq n$ is a basis of $\bigwedge^k (V^*)$.

Exercise 5 Let $v_1, v_2 \in \mathbb{R}^4$ be linearly independent. Prove that $v_1 \wedge v_2 = \rho w_1 \wedge w_2$ with $\rho \in \mathbb{R}^*$ if and only if w_1 and w_2 span the same subspace as v_1 and v_2 .