Integration by Parts

Math 1310N

2 February 2010
Integration by Parts

Integration by parts is an integration technique that transforms the integral of products of functions into other (ideally simpler) integrals.
Integration by parts is an integration technique that transforms the integral of products of functions into other (ideally simpler) integrals.

Motivation: Product rule for differentiation.
Integration by Parts

Product rule:
\[
\frac{d}{dx} \left(f(x)g(x) \right) = f'(x)g(x) + f(x)g'(x).
\]
Integration by Parts

Product rule:

\[
\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x).
\]

Interpreted as an integration rule:

\[
f(x)g(x) + C = \int f'(x)g(x) \, dx + \int f(x)g'(x) \, dx
\]
Integration by Parts

Product rule:
\[
\frac{d}{dx} (f(x)g(x)) = f'(x)g(x) + f(x)g'(x).
\]

Interpreted as an integration rule:
\[
f(x)g(x) + C = \int f'(x)g(x) \, dx + \int f(x)g'(x) \, dx
\]

Proposition 4.4.1. If \(f \) and \(g \) are cont. diff., then
\[
\int f'(x)g(x) \, dx = f(x)g(x) - \int f(x)g'(x) \, dx
\]
\[\int f'(x)g(x) \, dx = f(x)g(x) - \int f(x)g'(x) \, dx \]
\[\int f'(x)g(x) \, dx = f(x)g(x) - \int f(x)g'(x) \, dx \]

Strategy: to evaluate \(\int H(x) \, dx \), write \(H(x) = f'(x)g(x) \).
\[\int f'(x)g(x) \, dx = f(x)g(x) - \int f(x)g'(x) \, dx \]

Strategy: to evaluate \(\int H(x) \, dx \), write \(H(x) = f'(x)g(x) \).

Note. In the transition from the left-hand side to the right, \(g \) is differentiated and \(f' \) is integrated. It is useful to choose:
- \(g \) as a function that simplifies when differentiated, and
- \(f' \) as a function that simplifies when integrated.
\[
\int f'(x)g(x) \, dx = f(x)g(x) - \int f(x)g'(x) \, dx
\]

Strategy: to evaluate \(\int H(x) \, dx \), write \(H(x) = f'(x)g(x) \).

Note. In the transition from the left-hand side to the right, \(g \) is differentiated and \(f' \) is integrated. It is useful to choose:
- \(g \) as a function that simplifies when differentiated, and
- \(f' \) as a function that simplifies when integrated.

LIATE heuristic: pick \(g \) as whichever comes first from the left; pick \(f' \) as whichever comes first from the right:

<table>
<thead>
<tr>
<th>Log</th>
<th>Inv. trig</th>
<th>Algebraic</th>
<th>Trig</th>
<th>Exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>\ln, \log_2</td>
<td>arcsin, arctan</td>
<td>(x^2, 3x^{50})</td>
<td>sin, tan</td>
<td>(e^x, 17^x)</td>
</tr>
</tbody>
</table>
Summary

- You should understand and be able to use integration by parts to evaluate indefinite and definite integrals.

- You should be able to derive recursion formulas and apply these formulas to evaluate specific integrals.