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Polynomial representation

Polynomial representation

A pair (ρ,W ) where ρ : GLn(C)→ GL(W ) is a group

homomorphism such that the entries of ρ(A) are polynomials in

the entries of A ∈ GLn(C).

Example

ρ : GL2(C)→ GL3(C) given by

ρ

([
a b

c d

])
=

a2 2ab b2

ac ad + bc bd

c2 2cd d2

 .
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Weyl modules and Schur polynomials

Irreducible representations

Weyl modules: {Wλ(n) : len(λ) ≤ n} has dimension =

|SSYT (λ,≤ n)|
Characters: Schur polynomials

char(Wλ(n)) = trace(ρ(diag(x1, . . . , xn));Wλ(n)) = sλ(x1, . . . , xn)

Example

s(2,1)(x1, x2, x3) =

1 1
2

x2
1x2

1 1
3

x2
1x3

1 2
2

x1x
2
2

1 2
3

x1x2x3

1 3
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x1x2x3

1 3
3

x1x
2
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The Restriction problem

The irreducible representations of Sn: Specht modules Vµ

indexed by partitions µ of n.

Goal

To understand the decomposition of the restriction of a

polynomial representation of GLn(C) to the subgroup Sn:

Res
GLn(C)
Sn

Wλ(n) ∼=
⊕
µ`n

V
⊕rλ,µ
ν .

Open problem: Positive combinatorial interpretation for the

multiplicities rλ,µ.
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Littlewood’s formula

Littlewood’s formula

rλ,µ = 〈sλ, sµ[1 + h1 + h2 + · · · ]〉.

Here

H(X ) :=
∑

k≥0 hk(x1, x2, · · · ) =
∑

k≥0

∑
i1≤i2≤···≤ik xi1xi2 · · · xik .

Observe H is the generating function for multisets of any (finite)

size.

sµ[H] is the function obtained by substituting the variables of sµ by

those multisets bijectively.

Hence, is the generating function for multiset tableaux.

Mike Zabrocki, OPAC 2021

“This is an advance in the problem, but recasts the solution of

one problem in terms of another for which we don’t have a

combinatorial formula”.

5/22



Littlewood’s formula

Littlewood’s formula

rλ,µ = 〈sλ, sµ[1 + h1 + h2 + · · · ]〉.

Here

H(X ) :=
∑

k≥0 hk(x1, x2, · · · ) =
∑

k≥0

∑
i1≤i2≤···≤ik xi1xi2 · · · xik .

Observe H is the generating function for multisets of any (finite)

size.

sµ[H] is the function obtained by substituting the variables of sµ by

those multisets bijectively.

Hence, is the generating function for multiset tableaux.

Mike Zabrocki, OPAC 2021

“This is an advance in the problem, but recasts the solution of

one problem in terms of another for which we don’t have a

combinatorial formula”.

5/22



Littlewood’s formula

Littlewood’s formula

rλ,µ = 〈sλ, sµ[1 + h1 + h2 + · · · ]〉.

Here

H(X ) :=
∑

k≥0 hk(x1, x2, · · · ) =
∑

k≥0

∑
i1≤i2≤···≤ik xi1xi2 · · · xik .

Observe H is the generating function for multisets of any (finite)

size.

sµ[H] is the function obtained by substituting the variables of sµ by

those multisets bijectively.

Hence, is the generating function for multiset tableaux.

Mike Zabrocki, OPAC 2021

“This is an advance in the problem, but recasts the solution of

one problem in terms of another for which we don’t have a

combinatorial formula”.

5/22



Littlewood’s formula

Littlewood’s formula

rλ,µ = 〈sλ, sµ[1 + h1 + h2 + · · · ]〉.

Here

H(X ) :=
∑

k≥0 hk(x1, x2, · · · ) =
∑

k≥0

∑
i1≤i2≤···≤ik xi1xi2 · · · xik .

Observe H is the generating function for multisets of any (finite)

size.

sµ[H] is the function obtained by substituting the variables of sµ by

those multisets bijectively.

Hence, is the generating function for multiset tableaux.

Mike Zabrocki, OPAC 2021

“This is an advance in the problem, but recasts the solution of

one problem in terms of another for which we don’t have a

combinatorial formula”.

5/22



Littlewood’s formula

Littlewood’s formula

rλ,µ = 〈sλ, sµ[1 + h1 + h2 + · · · ]〉.

Here

H(X ) :=
∑

k≥0 hk(x1, x2, · · · ) =
∑

k≥0

∑
i1≤i2≤···≤ik xi1xi2 · · · xik .

Observe H is the generating function for multisets of any (finite)

size.

sµ[H] is the function obtained by substituting the variables of sµ by

those multisets bijectively.

Hence, is the generating function for multiset tableaux.

Mike Zabrocki, OPAC 2021

“This is an advance in the problem, but recasts the solution of

one problem in terms of another for which we don’t have a

combinatorial formula”.

5/22



Littlewood’s formula

Littlewood’s formula

rλ,µ = 〈sλ, sµ[1 + h1 + h2 + · · · ]〉.

Here

H(X ) :=
∑

k≥0 hk(x1, x2, · · · ) =
∑

k≥0

∑
i1≤i2≤···≤ik xi1xi2 · · · xik .

Observe H is the generating function for multisets of any (finite)

size.

sµ[H] is the function obtained by substituting the variables of sµ by

those multisets bijectively.

Hence, is the generating function for multiset tableaux.

Mike Zabrocki, OPAC 2021

“This is an advance in the problem, but recasts the solution of

one problem in terms of another for which we don’t have a

combinatorial formula”. 5/22



Why polynomial induction?

• rλ,µ = dimHomSn(ResWλ,Vµ) = 〈sλ, sµ[1 + h1 + h2 + · · · ]〉
• Scharf–Thibon gave a proof using Hopf algebra techniques

• The Frobenius reciprocity suggests

Question

Does there exist an induction functor Indd : RepSn → RepdGLn

such that

HomSn(ResWλ,Vµ) ∼= HomGLn(Wλ, Indd Vµ)
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Induced representation

Definition (Frobenius)

Given a representation (π,V ) of H, H ≤ G , can define

(πG , IndG
H V ) ∈ RepG

IndG
H V := {f : G → V | f (hg) = π(h)f (g), ∀h ∈ H,∀g ∈ G}

and πG (g)f (x) = f (xg).

Note: Frobenius’s ideas were extended to locally compact

topological groups and their unitary representations by Mackey.

Our work

We adapt Mackey’s construction to the setting of polynomial

representations.
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The construction of polynomial induction

Notation: Mn: Ring of n × n matrices with entries in C.

Pd(Mn): Space of homogeneous polynomials of degree d in the

entries of matrices Q ∈ Mn.

Pd(Mn)⊗ V can be regarded as the space of V -valued

homogeneous polynomials of degree d on Mn.

Definition

Given a representation (ρ,V ) of Sn, consider

IndGLn
Sn

V = {f : Pd(Mn)⊗V | f (wQ) = ρ(w)f (Q), ∀w ∈ Sn,Q ∈ Mn}.

and (ρG (g)f )(Q) = f (Qg).

We proved: Indd : RepSn → RepdGLn is right adjoint to the

restriction functor.
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Polynomial induction of trivial representation

• Let 1n denote the trivial representation of Sn.

Indd 1n = {f ∈ Pd(Mn) | f (wQ) = f (Q) for all w ∈ Sn, Q ∈ Mn}

• M(d , n): all matrices with entries in N that sum to d . For

A ∈ M(d , n) of the form A = (aij), let qA denote the

monomial
∏

1≤i ,j≤n q
aij
ij .

• Then {qA | A ∈ M(d , n)} is a basis of Pd(Mn).

• Therefore Indd 1n has a basis indexed by Sn-orbits in M(d , n),

where Sn acts by permutation of rows.
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What is the character?

Theorem

For every positive integer n,

char Indd 1n =
∑

{x∈Nn:|x|=d}

pn(x)tx

Sketch of the proof:

Let A = (aij) ∈ M(d , n)/Sn, then g = diag(t1, . . . , tn) acts on

Indd 1n by

g · QA = (Qg)A = txQA. where x is the sum of the columns of A.

Thus the basis elements of Indd 1n that contribute to the

monomial tx in char Indd 1n are in bijection with vector partitions

of x with at most n parts.
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Main results in polynomial induction

For a representation (ρ,V ) of Sn, let (Ind ρ, IndV ) denote the

family {(Indd ρ, Indd V )}d≥0.

Then

char Ind 1n =
∑

x∈Nn

pn(x)tx = hn[1 + h1 + h2 + · · · ].

Theorem (NPPS)

char IndV = F(V )[1 + h1 + h2 + . . .],

where F is the Frobenius map: F(Vµ) = sµ.

In particular char IndVµ = sµ[1 + h1 + h2 + · · · ].

Corollary (Representation theoretic view of Littlewood’s

identity)

rλ,µ = 〈ResWλ,Vµ〉Sn = 〈sλ, sµ[1 + h1 + h2 + · · · ]〉.
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Attempts so far ctd.

Sami Assaf, David Speyer, “Specht modules decompose as

alternating sums of restrictions of Schur modules”.

Rosa Orellana, Mike Zabrocki “Characters of the symmetric group

as symmetric functions”.

Specht symmetric function

Assaf and Speyer and independently Orellana and Zabrocki

introduced Specht symmetric functions s†:

sλ = s†λ +
∑
|µ|<|λ|

rλµ[n]s
†
µ.

Nate Harman “Representations of monomial matrices and

restriction from GLn to Sn”.
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Positivity of some Restriction coefficients

Question

For which λ is rλ,(n) = 〈ResWλ(n),V(n)〉Sn > 0?

The following results we obtained using the theory of character

polynomials.

Theorem (NPPS)

1. If λ has two rows then rλ,(n) > 0 unless λ = (1, 1).

2. If λ has two columns then rλ,(n) > 0 if and only if

λ1
′ − λ2

′ ≤ 1.

3. If λ = (a + 1, 1b) then rλ,(n) > 0 if and only if a ≥
(b+1

2

)
.
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Character polynomial

Character polynomial unifies characters of Sn across all n.

• Let P = C[X1,X2, · · · ] denote the ring of polynomials in

variables X1,X2, · · · .

• For w ∈ Sn, let Xi (w) = no. of cycles of length i in w .

• w ∈ Sn 7→ q(X1(w)),X2(w), · · · ) ∈ P defines a class function

on Sn.

Example (Standard representations)

trace(w ;V(n−1,1)) = no. of fixed points of w − 1 = X1(w)− 1.

Character polynomial is a polynomial in the cycle-counting

functions.

Note that P is a graded algebra when the variable Xi has degree i .
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Character polynomials ctd.

Theorem (Binomial basis)

Given a partition α = 1a12a2 · · · , define
(X
α

)
:=
∏

i≥1

(Xi
ai

)
. Then{(X

α

)
| α is a partition

}
is a basis of P.

Representations with Polynomial Character

A family of representation {Vn} of Sn is said to have eventually

polynomial character if there exists q ∈ P and a positive integer

N such that, for each n ≥ N and each w ∈ Sn,

trace(w ;Vn) = q(X1(w),X2(w), . . . )

Church, Ellenberg and Farb, “FI-modules and stability for

representations of symmetric groups”.
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Character polynomial of Weyl modules

Specht module has eventually polynomial character, that is, for

every partition λ there exist qλ ∈ P such that

trace(w ;Vn−|λ|,λ) = qλ(X1(w),X2(w), . . . ).

for n ≥ λ1 + |λ|.

Explicitly appears first in Macdonald’s book, later in Garsia, Goupil.

Goal

To compute Sλ ∈ P such that

trace(w ;ResWλ(n)) = Sλ(w)

Recipe is to find character polynomial of Symd(Cn) or Altd(Cn)

and apply Jacobi–Trudi identities.
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Character Polynomials of Sym and Alt

Let us find Hd(w) := trace(w ; Symd(Cn)) and

Ed(w) := trace(w ;Altd(Cn)).

Theorem (NPPS)

Hd =
∑
α`d

((
X

α

))
,

Ed =
∑
α`d

(−1)a2+a4+···
(
X

α

)
.

Here
(( n
d

))
=
(n+d−1

d

)
and

((
X
α

))
:=
∏

i≥1

((
Xi
ai

))
when

α = 1a12a2 · · · .

17/22



Character Polynomials of Sym and Alt

Let us find Hd(w) := trace(w ; Symd(Cn)) and

Ed(w) := trace(w ;Altd(Cn)).

Theorem (NPPS)

Hd =
∑
α`d

((
X

α

))
,

Ed =
∑
α`d

(−1)a2+a4+···
(
X

α

)
.

Here
(( n
d

))
=
(n+d−1

d

)
and

((
X
α

))
:=
∏

i≥1

((
Xi
ai

))
when

α = 1a12a2 · · · .

17/22



Stable restriction coefficients

Recall Sλ = det(Hλi+j−i ) = det(Eλ′i+j−i ).

Both qλ and Sλ are inhomogeneous polynomials of degree |λ| in

the graded algebra P.

Two bases of P

S = {Sλ | λ is a partition }
q = {qλ | λ is a partition }.

What is the change of basis?

Observation

Sλ =
∑

rλ,µ[n]qµ

where µ[n] := (n − |µ|, µ1, µ2, . . .).
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Relation to symmetric functions

Let Λ denote the ring of symmetric functions. Define Φ : Λ→ P by

Φ(pk) =
∑
d |k

dXd .

One can prove that Φ is an isomorphism of rings such that

Φ(sλ) = Sλ and Φ(s†λ) = qλ.

Character polynomials and symmetric functions

sλ
rλµ[n]

Φ

��

s†µ

Φ

��

in Λ

Sλ rλµ[n]
qµ in P
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Moment of a character polynomial

For two representations V and W of Sn, we have

〈V ,W 〉n := dimHomSn(V ,W ) =
1

n!

∑
w∈Sn

trace(w ;V )trace(w ;W )

Can be extended to this setting:

Definition (Moment)

Given character polynomials q1, q2 corresponding to two families

of Sn representations {Vn}, {Wn} respectively, define moment

〈q1q2〉n :=
∑
α`n

1

zα
q1(α)q2(α).

α = 1a12a2 · · · zα =
∏
i

iai ai !.
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Moments and the restriction coefficients

Theorem (NPPS)

For every integer partition α = 1a12a2 · · · , we have:

〈(
X

α

)〉
n

=

0 if n < |α|,

1/zα otherwise.

Moments of a character polynomial stablises beyond a certain n.

Recall

• ResWλ
∼=
⊕

µ V
rλµ[n]

µ[n]

• Sλ =
∑

rλ,µ[n]qµ.

• By definition, rλ,µ[n] = 〈Sλqµ〉.
• After expanding the product in the binomial basis, the

moment can be computed and hence restriction coefficients.
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Moment of Weyl character polynomial

Theorem (NPPS)

For every partition λ, 〈Sλ〉n is the coefficient of tλvn in∏
i<j

(1− tj/ti )
∏
R@[l ]

(1− tRv)−1.

Theorem (NPPS)

For every partition λ = (λ1, · · · , λl),

rλ,(n) =
∑
w∈Sl

sgn(w)pn(λ1 − 1 + w(1), · · · , λl − l + w(l)).

Thank You
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