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Lecture Notes
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Example

Let A =

[
4 −2
−1 3

]
. Find A100.

How can we do this efficiently?

Consider the matrix P =

[
1 −2
1 1

]
. Observe that P is invertible (why?),

and that

P−1 =
1
3

[
1 2
−1 1

]
.

Furthermore,

P−1AP =
1
3

[
1 2
−1 1

] [
4 −2
−1 3

] [
1 −2
1 1

]
=

[
2 0
0 5

]
= D,

where D is a diagonal matrix.
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Example (continued)
This is significant, because

P−1AP = D

P(P−1AP)P−1 = PDP−1

(PP−1)A(PP−1) = PDP−1

IAI = PDP−1

A = PDP−1,

and so

A100 = (PDP−1)100

= (PDP−1)(PDP−1)(PDP−1) · · · (PDP−1)

= PD(P−1P)D(P−1P)D(P−1 · · ·P)DP−1

= PDIDIDI · · · IDP−1

= PD100P−1.
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Example (continued)
Now,

D100 =

[
2 0
0 5

]100

=

[
2100 0
0 5100

]
.

Therefore,

A100 = PD100P−1

=

[
1 −2
1 1

] [
2100 0
0 5100

](
1
3

)[
1 2
−1 1

]

=
1
3

[
2100 + 2 · 5100 2100 − 2 · 5100

2100 − 5100 2 · 2100 + 5100

]

=
1
3

[
2100 + 2 · 5100 2100 − 2 · 5100

2100 − 5100 2101 + 5100

]
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Theorem (Diagonalization and Matrix Powers)

If A = PDP−1, then Ak = PDkP−1 for each k = 1, 2, 3, . . .

The process of finding an invertible matrix P and a diagonal matrix D so
that A = PDP−1 is referred to as diagonalizing the matrix A, and P is
called the diagonalizing matrix for A.

Problem
When is it possible to diagonalize a matrix?
How do we find a diagonalizing matrix?
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Eigenvalues and Eigenvectors

Definition
Let A be an n × n matrix, λ a real number, and x 6= 0 an n-vector. If
Ax = λx, then λ is an eigenvalue of A, and x is an eigenvector of A
corresponding to λ, or a λ-eigenvector.

Example

Let A =

[
1 2
1 2

]
and x =

[
1
1

]
. Then

Ax =

[
1 2
1 2

] [
1
1

]
=

[
3
3

]
= 3

[
1
1

]
= 3x.

This means that 3 is an eigenvalue of A, and
[
1
1

]
is an eigenvector of A

corresponding to 3 (or a 3-eigenvector of A).
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Finding all Eigenvalues and Eigenvectors of a Matrix

Suppose that A is an n × n matrix, x 6= 0 an n-vector, λ ∈ R, and that
Ax = λx.

Then

λx− Ax = 0
λIx− Ax = 0
(λI − A)x = 0

Since x 6= 0, the matrix λI − A has no inverse, and thus

det(λI − A) = 0.
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Definition
The characteristic polynomial of an n × n matrix A is

cA(x) = det(xI − A).

Example

The characteristic polynomial of A =

[
4 −2
−1 3

]
is

cA(x) = det
([

x 0
0 x

]
−
[

4 −2
−1 3

])
= det

[
x − 4 2
1 x − 3

]
= (x − 4)(x − 3)− 2
= x2 − 7x + 10

Determinants and Diagonalization Eigenvalues and Eigenvectors Page 10/44



Definition
The characteristic polynomial of an n × n matrix A is

cA(x) = det(xI − A).

Example

The characteristic polynomial of A =

[
4 −2
−1 3

]
is

cA(x) = det
([

x 0
0 x

]
−
[

4 −2
−1 3

])
= det

[
x − 4 2
1 x − 3

]
= (x − 4)(x − 3)− 2
= x2 − 7x + 10

Determinants and Diagonalization Eigenvalues and Eigenvectors Page 10/44



Theorem (Eigenvalues and Eigenvectors of a Matrix)
Let A be an n × n matrix.

1 The eigenvalues of A are the roots of cA(x).
2 The λ-eigenvectors x are the nontrivial solutions to (λI − A)x = 0.

Example (continued)

For A =

[
4 −2
−1 3

]
, we have

cA(x) = x2 − 7x + 10 = (x − 2)(x − 5),

so A has eigenvalues λ1 = 2 and λ2 = 5.
To find the 2-eigenvectors of A, solve (2I − A)x = 0:[

−2 2 0
1 −1 0

]
→
[

1 −1 0
−2 2 0

]
→
[
1 −1 0
0 0 0

]
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Example (continued)
The general solution, in parametric form, is

x =

[
t
t

]
= t

[
1
1

]
where t ∈ R.

To find the 5-eigenvectors of A, solve (5I − A)x = 0:[
1 2 0
1 2 0

]
→
[
1 2 0
0 0 0

]

The general solution, in parametric form, is

x =

[
−2s

s

]
= s

[
−2
1

]
where s ∈ R.
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Definition
A basic eigenvector of an n × n matrix A is any nonzero multiple of a basic
solution to (λI − A)x = 0, where λ is an eigenvalue of A.

Example (continued)[
1
1

]
and

[
−2
1

]
are basic eigenvectors of the matrix

A =

[
4 −2
−1 3

]
corresponding to eigenvalues λ1 = 2 and λ2 = 5, respectively.
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Example

For A =

 3 −4 2
1 −2 2
1 −5 5

, find cA(x), the eigenvalues of A, and find

corresponding basic eigenvectors.

det(xI − A) =

∣∣∣∣∣∣
x − 3 4 −2
−1 x + 2 −2
−1 5 x − 5

∣∣∣∣∣∣ =
∣∣∣∣∣∣
x − 3 4 −2
0 x − 3 −x + 3
−1 5 x − 5

∣∣∣∣∣∣

=

∣∣∣∣∣∣
x − 3 4 2
0 x − 3 0
−1 5 x

∣∣∣∣∣∣ = (x − 3)
∣∣∣∣ x − 3 2
−1 x

∣∣∣∣
cA(x) = (x − 3)(x2 − 3x + 2) = (x − 3)(x − 2)(x − 1).
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Example (continued)
Therefore, the eigenvalues of A are λ1 = 3, λ2 = 2, and λ3 = 1.

Basic eigenvectors corresponding to λ1 = 3: solve (3I − A)x = 0. 0 4 −2 0
−1 5 −2 0
−1 5 −2 0

→ · · · →
 1 0 −1

2 0
0 1 −1

2 0
0 0 0 0



Thus x =

 1
2 t
1
2 t
t

 = t

 1
2
1
2
1

, t ∈ R.

Choosing t = 2 gives us x1 =

 1
1
2

 as a basic eigenvector corresponding

to λ1 = 3.
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Example (continued)
Basic eigenvectors corresponding to λ2 = 2: solve (2I − A)x = 0. −1 4 −2 0

−1 4 −2 0
−1 5 −3 0

→ · · · →
 1 0 −2 0

0 1 −1 0
0 0 0 0



Thus x =

 2s
s
s

 = s

 2
1
1

, s ∈ R.

Choosing s = 1 gives us x2 =

 2
1
1

 as a basic eigenvector corresponding

to λ2 = 2.
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Example (continued)
Basic eigenvectors corresponding to λ3 = 1: solve (I − A)x = 0. −2 4 −2 0

−1 3 −2 0
−1 5 −4 0

→ · · · →
 1 0 −1 0

0 1 −1 0
0 0 0 0



Thus x =

 r

r
r

 = r

 1
1
1

, r ∈ R.

Choosing r = 1 gives us x3 =

 1
1
1

 as a basic eigenvector corresponding

to λ3 = 1.
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Geometric Interpretation of Eigenvalues and Eigenvectors
Let A be a 2× 2 matrix. Then A can be interpreted as a linear
transformation from R2 to R2.

Problem
How does the linear transformation affect the eigenvectors of the matrix?

Definition
Let V be a nonzero vector in R2. We denote by LV the unique line in R2

that contains V and the origin.

Lemma

Let V =

[
a
b

]
be a nonzero vector in R2. Then LV is the set of all scalar

multiples of V , i.e.,

LV = RV = {tV | t ∈ R} .
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Definition
Let A be a 2× 2 matrix and L a line in R2 through the origin. Then L is
said to be A-invariant if the vector Ax lies in L whenever x lies in L,

i.e., Ax is a scalar multiple of x,
i.e., Ax = λx for some scalar λ ∈ R,
i.e., x is an eigenvector of A.

Theorem (A-Invariance)

Let A be a 2× 2 matrix and let V 6= 0 be a vector in R2. Then LV is
A-invariant if and only if V is an eigenvector of A.

This theorem provides a geometrical method for finding the eigenvectors of
a 2× 2 matrix.
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Example
Let m ∈ R and consider the linear transformation Qm : R2 → R2, i.e.,
reflection in the line y = mx .

The matrix that induces Qm is

A =
1

1+m2

[
1−m2 2m
2m m2 − 1

]
.

Claim. x1 =

[
1
m

]
is an eigenvector of A corresponding to eigenvalue

λ = 1.

The reason for this: x1 =

[
1
m

]
lies in the line y = mx , and hence

Qm

[
1
m

]
=

[
1
m

]
, implying that A

[
1
m

]
= 1

[
1
m

]
.
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Example (continued)

More generally, any vector
[

k
km

]
, k 6= 0, lies in the line y = mx and is

an eigenvector of A.
Another way of saying this is that the line y = mx is A-invariant for the
matrix

A =
1

1+m2

[
1−m2 2m
2m m2 − 1

]
.
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Example
Let θ be a real number, and Rθ : R2 → R2 rotation through an angle of θ,
induced by the matrix

A =

[
cos θ − sin θ
sin θ cos θ

]
.

Claim. A has no real eigenvectors unless θ is an integer multiple of π, i.e.,
±π,±2π,±3π, etc.

The reason for this: a line L in R2 is A invariant if and only if θ is an
integer multiple of π.
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Diagonalization

Notation.
An n × n diagonal matrix

D =



a1 0 0 · · · 0 0
0 a2 0 · · · 0 0
0 0 a3 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · an−1 0
0 0 0 · · · 0 an


is written diag(a1, a2, a3, . . . , an−1, an).

Recall that if A is an n × n matrix and P is an invertible n × n matrix so
that P−1AP is diagonal, then P is called a diagonalizing matrix of A, and
A is diagonalizable.
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Theorem (Matrix Diagonalization)
Let A be an n × n matrix.

1 A is diagonalizable if and only if it has eigenvectors x1, x2, . . . , xn so
that

P =
[

x1 x2 · · · xn
]

is invertible.

2 If P is invertible, then

P−1AP = diag(λ1, λ2, . . . , λn)

where λi is the eigenvalue of A corresponding to the eigenvector xi ,
i.e., Axi = λixi .
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Example

A =

 3 −4 2
1 −2 2
1 −5 5

 has eigenvalues and corresponding basic eigenvectors

λ1 = 3 and x1 =

 1
1
2

 ;λ2 = 2 and x2 =

 2
1
1

 ;λ3 = 1 and x3 =

 1
1
1

 .

Let P =
[

x1 x2 x3
]
=

 1 2 1
1 1 1
2 1 1

. Then P is invertible (check

this!), so by the above Theorem,

P−1AP = diag(3, 2, 1) =

 3 0 0
0 2 0
0 0 1

 .
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Note
It is not always possible to find n eigenvectors so that P is invertible.

Example

Let A =

 1 −2 3
2 6 −6
1 2 −1

. Then

cA(x) =

∣∣∣∣∣∣
x − 1 2 −3
−2 x − 6 6
−1 −2 x + 1

∣∣∣∣∣∣ = · · · = (x − 2)3.

A has only one eigenvalue, λ1 = 2, with multiplicity three.

To find the 2-eigenvectors of A, solve the system (2I − A)x = 0.
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Example (continued) 1 2 −3 0
−2 −4 6 0
−1 −2 3 0

→ · · · →
 1 2 −3 0

0 0 0 0
0 0 0 0



The general solution in parametric form is

x =

 −2s + 3t
s
t

 = s

 −21
0

+ t

 3
0
1

 , s, t ∈ R.

Since the system has only two basic solutions, there are only two basic
eigenvectors, implying that the matrix A is not diagonalizable.
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Example

Diagonalize, if possible, the matrix A =

 1 0 1
0 1 0
0 0 −3

.

cA(x) = det(xI − A) =

∣∣∣∣∣∣
x − 1 0 −1
0 x − 1 0
0 0 x + 3

∣∣∣∣∣∣ = (x − 1)2(x + 3).

A has eigenvalues λ1 = 1 of multiplicity two; λ2 = −3 of multiplicity one.

Determinants and Diagonalization Diagonalization Page 28/44



Example

Diagonalize, if possible, the matrix A =

 1 0 1
0 1 0
0 0 −3

.

cA(x) = det(xI − A) =

∣∣∣∣∣∣
x − 1 0 −1
0 x − 1 0
0 0 x + 3

∣∣∣∣∣∣ = (x − 1)2(x + 3).

A has eigenvalues λ1 = 1 of multiplicity two; λ2 = −3 of multiplicity one.

Determinants and Diagonalization Diagonalization Page 28/44



Example

Diagonalize, if possible, the matrix A =

 1 0 1
0 1 0
0 0 −3

.

cA(x) = det(xI − A) =

∣∣∣∣∣∣
x − 1 0 −1
0 x − 1 0
0 0 x + 3

∣∣∣∣∣∣ = (x − 1)2(x + 3).

A has eigenvalues λ1 = 1 of multiplicity two; λ2 = −3 of multiplicity one.

Determinants and Diagonalization Diagonalization Page 28/44



Example (continued)
Eigenvectors for λ1 = 1: solve (I − A)x = 0. 0 0 −1 0

0 0 0 0
0 0 4 0

→
 0 0 1 0

0 0 0 0
0 0 0 0



x =

 s
t
0

, s, t ∈ R so basic eigenvectors corresponding to λ1 = 1 are

 1
0
0

 ,
 0

1
0


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Example (continued)
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Example (continued)
Eigenvectors for λ2 = −3: solve (−3I − A)x = 0. −4 0 −1 0

0 −4 0 0
0 0 0 0

→
 1 0 1

4 0
0 1 0 0
0 0 0 0



x =

 −1
4 t
0
t

, t ∈ R so a basic eigenvector corresponding to λ2 = −3 is

 −10
4


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Example (continued)
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Example (continued)
Let

P =

 −1 1 0
0 0 1
4 0 0

 .

Then P is invertible, and

P−1AP = diag(−3, 1, 1) =

 −3 0 0
0 1 0
0 0 1

 .
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Theorem (Matrix Diagonalization Test)
A square matrix A is diagonalizable if and only if every eigenvalue λ of
multiplicity m yields exactly m basic eigenvectors, i.e., the solution to
(λI − A)x = 0 has m parameters.

A special case of this is

Theorem (Distinct Eigenvalues and Diagonalization)
An n × n matrix with distinct eigenvalues is diagonalizable.
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Example

Show that A =

 1 1 0
0 1 0
0 0 2

 is not diagonalizable.

First,

cA(x) =

∣∣∣∣∣∣
x − 1 −1 0
0 x − 1 0
0 0 x − 2

∣∣∣∣∣∣ = (x − 1)2(x − 2),

so A has eigenvalues λ1 = 1 of multiplicity two; λ2 = 2 (of multiplicity
one).
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Example (continued)
Eigenvectors for λ1 = 1: solve (I − A)x = 0. 0 −1 0 0

0 0 0 0
0 0 −1 0

→
 0 1 0 0

0 0 1 0
0 0 0 0



Therefore, x =

 s
0
0

, s ∈ R.

Since λ1 = 1 has multiplicity two, but has only one basic eigenvector, A is
not diagonalizable.
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Problem

Let A =

 8 5 8
0 −1 0
−4 −5 −4

.
Show that 4 is an eigenvalue of A, and find a corresponding basic
eigenvector.
Verify that

[
1 −1 −1

]
is an eigenvector os A, and find its

corresponding eigenvalue.
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Linear Dynamical Systems

A linear dynamical system consists of
an n × n matrix A and an n-vector V0;

a matrix recursion defining V1,V2,V3, . . . by Vk+1 = AVk ; i.e.,

V1 = AV0

V2 = AV1 = A(AV0) = A2V0

V3 = AV2 = A(A2V0) = A3V0
...

...
...

Vk = AkV0.

Linear dynamical systems are used, for example, to model the evolution of
populations over time.
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If A is diagonalizable, then

P−1AP = D = diag(λ1, λ2, . . . , λn),

where λ1, λ2, . . . , λn are the (not necessarily distinct) eigenvalues of A.

Thus A = PDP−1, and Ak = PDkP−1. Therefore,

Vk = AkV0 = PDkP−1V0.
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Example
Consider the linear dynamical system Vk+1 = AVk with

A =

[
2 0
3 −1

]
, and V0 =

[
1
−1

]
.

Find a formula for Vk .

First, cA(x) = (x − 2)(x + 1), so A has eigenvalues λ1 = 2 and λ2 = −1,
and thus is diagonalizable.

Solve (2I − A)x = 0:[
0 0 0
−3 3 0

]
→
[
1 −1 0
0 0 0

]

has general solution x =

[
s
s

]
, s ∈ R, and basic solution x1 =

[
1
1

]
.
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Example (continued)
Solve (−I − A)x = 0:[

−3 0 0
−3 0 0

]
→
[
1 0 0
0 0 0

]

has general solution x =

[
0
t

]
, t ∈ R, and basic solution x2 =

[
0
1

]
.

Thus, P =

[
1 0
1 1

]
is a diagonalizing matrix for A,

P−1 =

[
1 0
−1 1

]
, and P−1AP =

[
2 0
0 −1

]
.
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Example (continued)
Therefore,

Vk = AkV0

= PDkP−1V0

=

[
1 0
1 1

] [
2 0
0 −1

]k [ 1 0
−1 1

] [
1
−1

]
=

[
1 0
1 1

] [
2k 0
0 (−1)k

] [
1
−2

]
=

[
2k 0
2k (−1)k

] [
1
−2

]
=

[
2k

2k − 2(−1)k
]
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Remark
Often, instead of finding an exact formula for Vk , it suffices to estimate Vk

as k gets large.

This can easily be done if A has a dominant eigenvalue with multiplicity
one: an eigenvalue λ1 with the property that

|λ1| > |λj | for j = 2, 3, . . . , n.

Suppose that
Vk = PDkP−1V0,

and assume that A has a dominant eigenvalue, λ1, with corresponding
basic eigenvector x1 as the first column of P .
For convenience, write P−1V0 =

[
b1 b2 · · · bn

]T .
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Then

Vk = PDkP−1V0

=
[

x1 x2 · · · xn
]

λk1 0 · · · 0
0 λk2 · · · 0
...

...
...

...
0 0 · · · λkn




b1
b2
...
bn


= b1λ

k
1x1 + b2λ

k
2x2 + · · ·+ bnλ

k
nxn

= λk1

(
b1x1 + b2

(
λ2

λ1

)k

x2 + · · ·+ bn

(
λn
λ1

)k

xn

)

Now,
∣∣∣ λj

λ1

∣∣∣ < 1 for j = 2, 3, . . . n, and thus
(

λj

λ1

)k
→ 0 as k →∞.

Therefore, for large values of k , Vk ≈ λk1b1x1.
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Example
If

A =

[
2 0
3 −1

]
, and V0 =

[
1
−1

]
,

estimate Vk for large values of k .

In our previous example, we found that A has eigenvalues 2 and −1. This
means that λ1 = 2 is a dominant eigenvalue; let λ2 = −1.

As before x1 =

[
1
1

]
is a basic eigenvector for λ1 = 2, and x2 =

[
0
1

]
is

a basic eigenvector for λ2 = −1, giving us

P =

[
1 0
1 1

]
, and P−1 =

[
1 0
−1 1

]
.
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Example (continued)

P−1V0 =

[
1 0
−1 1

] [
1
−1

]
=

[
1
−2

]
=

[
b1
b2

]

For large values of k ,

Vk ≈ λk1b1x1 = 2k(1)
[
1
1

]
=

[
2k

2k

]

Let’s compare this to the formula for Vk that we obtained earlier:

Vk =

[
2k

2k − 2(−1)k
]
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