SOME EXERCISES RELATED TO THE FIRST FOUR VIDEOS

(1) Calculate $h_{2} s_{221}$ in three different ways:
(a) Expand s_{221} as a determinant in the h-basis; multiply by h_{2}; find the lowest term $c_{\mu} h_{\mu}$ in lex order and subtract off $c_{\mu} s_{\mu}$; repeat this last step until you get 0 .
(b) Using the Pieri rule
(c) Using SAGE symmetric function package
(2) Define $e_{1}=h_{1}$ and $e_{0}=h_{0}=1$ and $e_{r}=-\sum_{i=1}^{r}(-1)^{i} h_{i} e_{r-i}$ for $r>1$. Compute e_{2}, e_{3}, e_{4} and e_{5}. We will use similar notation to the h-basis. For a partitions $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$, set $e_{\lambda}:=e_{\lambda_{1}} e_{\lambda_{2}} \cdots e_{\lambda_{\ell}}$.
(3) Compute $e_{2} s_{21}$ by expanding e_{2} and s_{21} as polynomials in the h-basis and the re-expanding in the Schur basis.
(4) Conjecture a formula for $e_{r} s_{\lambda}$. Do this by computing more examples, such as $e_{2} s_{22}, e_{3} s_{4}, e_{2} s_{41}$ and then drawing the partitions which you observe appear in this expansion. Draw the partitions as Young diagrams and compare the diagrams to the diagram for λ. Make a guess from these examples and the formula we "know" $e_{1} s_{\lambda}=h_{1} s_{\lambda}$. You should do the first few examples using the method of expanding in the h-basis by hand, then collect more data using the computer.
(5) Let $\omega\left(h_{r}\right)=e_{r}$ for all $r \geq 1$ and then extend this to all partitions by setting $\omega\left(h_{\lambda}\right)=e_{\lambda}$. Show that $\omega\left(e_{r}\right)=h_{r}$.
(6) Show that $e_{r}=s_{1^{r}}$ for $r \geq 0$.
(7) Compute examples of $\omega\left(s_{\lambda}\right)$ for λ a partition of $1,2,3,4$. Conjecture a formula for $\omega\left(s_{\lambda}\right)$.
(8) Expand $3 h_{31}+h_{22}-h_{1111}$ in terms of Schur functions. Describe how to do this in general.
(9) Expand the quantity

$$
\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right)
$$

for $n=1,2,3,4$. If you just think of $\prod_{1 \leq i<j \leq n}\left(x_{i}+x_{j}\right)$ and set $x_{k}=1$ (for all $1 \leq k \leq n$) you can see that you should in theory get up to $2^{n(n-1) / 2}$ monomials, but with the expression $x_{i}-x_{j}$ you get fewer because some cancel with the sign. How many terms do you seem to get for each of $n=1,2,3,4$? Conjecture how many there are for all n.
(10) The symmetric functions are endowed with an inner product, where

$$
\left\langle s_{\lambda}, s_{\mu}\right\rangle= \begin{cases}1 & \text { if } \lambda=\mu \\ 0 & \text { otherwise }\end{cases}
$$

and the scalar product is a bi-linear form (that is for symmetric functions F, G, H, K and for coefficients $a, b, c, d \in \mathbb{Q},\langle a F+b G, c H+d K\rangle=a c\langle F, H\rangle+a d\langle F, K\rangle+$ $b c\langle G, H\rangle+b d\langle G, K\rangle$. Compute the following examples:
(a) $\left\langle 4 s_{31}-3 s_{22}+s_{1111}+12 s_{211}-2 s_{4}, s_{22}\right\rangle$
(b) $\left\langle 4 s_{31}-3 s_{22}+s_{1111}+12 s_{211}-2 s_{4}, 4 s_{31}-3 s_{22}+s_{1111}+12 s_{211}-2 s_{4}\right\rangle$
(c) $\left\langle 4 h_{31}-3 h_{22}+h_{1111}+12 h_{211}-2 h_{4}, s_{22}\right\rangle$
(d) $\left\langle 4 h_{31}-3 h_{22}+h_{1111}+12 h_{211}-2 h_{4}, 4 h_{31}-3 h_{22}+h_{1111}+12 h_{211}-2 h_{4}\right\rangle$
(e) $\left\langle h_{1}, h_{1}\right\rangle,\left\langle h_{11}, h_{11}\right\rangle,\left\langle h_{111}, h_{111}\right\rangle,\left\langle h_{1111}, h_{1111}\right\rangle$
(11) The scalar product can be used to expand a symmetric function in the Schur basis. Prove that for any symmetric function F,

$$
F=\sum_{\lambda}\left\langle F, s_{\lambda}\right\rangle s_{\lambda}
$$

(12) Compute the h-expansion of s_{221} using the Pieri rule following this procedure.
(a) Compute $h_{2} s_{21}=s_{221}+$ terms higher
(b) Rearrange this equation to read $s_{221}=h_{2} s_{21}$ - terms higher
(c) Now recursively use the Pieri rule to expand each of the terms on the right hand side of this equation by computing $h_{\lambda_{1}} s_{\left(\lambda_{2}, \lambda_{3}, \ldots, \lambda_{\ell}\right)}=s_{\lambda}+$ terms higher.
Example: $h_{21}=h_{2} s_{1}=s_{21}+s_{3}$ so then we can solve for the Schur function s_{21} and find that $s_{21}=h_{21}-s_{3}=h_{21}-h_{3}$. Now this last expression is the same as $\operatorname{det}\left[\begin{array}{cc}h_{2} & h_{3} \\ 1 & h_{1}\end{array}\right]$.
(13) We can then use this scalar product to define the operation which is "dual" to multiplication. For two symmetric functions F and G define $F^{\perp} G$ to be the symmetric function such that $\left\langle F^{\perp} G, s_{\lambda}\right\rangle=\left\langle G, F \cdot s_{\lambda}\right\rangle$. Find a formula for the Schur expansion of $h_{r}^{\perp} s_{\lambda}$.

