SOME EXERCISES RELATED TO THE FIRST FOUR VIDEOS

- (1) Calculate $h_2 s_{221}$ in three different ways:
 - (a) Expand s_{221} as a determinant in the *h*-basis; multiply by h_2 ; find the lowest term $c_{\mu}h_{\mu}$ in lex order and subtract off $c_{\mu}s_{\mu}$; repeat this last step until you get 0.
 - (b) Using the Pieri rule
 - (c) Using SAGE symmetric function package
- (2) Define $e_1 = h_1$ and $e_0 = h_0 = 1$ and $e_r = -\sum_{i=1}^r (-1)^i h_i e_{r-i}$ for r > 1. Compute e_2, e_3, e_4 and e_5 . We will use similar notation to the *h*-basis. For a partitions $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$, set $e_\lambda := e_{\lambda_1} e_{\lambda_2} \cdots e_{\lambda_\ell}$.
- (3) Compute e_2s_{21} by expanding e_2 and s_{21} as polynomials in the *h*-basis and the re-expanding in the Schur basis.
- (4) Conjecture a formula for $e_r s_{\lambda}$. Do this by computing more examples, such as $e_{2}s_{22}$, $e_{3}s_{4}$, $e_{2}s_{41}$ and then drawing the partitions which you observe appear in this expansion. Draw the partitions as Young diagrams and compare the diagrams to the diagram for λ . Make a guess from these examples and the formula we "know" $e_{1}s_{\lambda} = h_{1}s_{\lambda}$. You should do the first few examples using the method of expanding in the *h*-basis by hand, then collect more data using the computer.
- (5) Let $\omega(h_r) = e_r$ for all $r \ge 1$ and then extend this to all partitions by setting $\omega(h_{\lambda}) = e_{\lambda}$. Show that $\omega(e_r) = h_r$.
- (6) Show that $e_r = s_{1^r}$ for $r \ge 0$.
- (7) Compute examples of $\omega(s_{\lambda})$ for λ a partition of 1,2,3,4. Conjecture a formula for $\omega(s_{\lambda})$.
- (8) Expand $3h_{31} + h_{22} h_{1111}$ in terms of Schur functions. Describe how to do this in general.
- (9) Expand the quantity

$$\prod_{1 \le i < j \le n} \left(x_i - x_j \right)$$

for n = 1, 2, 3, 4. If you just think of $\prod_{1 \le i < j \le n} (x_i + x_j)$ and set $x_k = 1$ (for all $1 \le k \le n$) you can see that you should in theory get up to $2^{n(n-1)/2}$ monomials, but with the expression $x_i - x_j$ you get fewer because some cancel with the sign. How many terms do you seem to get for each of n = 1, 2, 3, 4? Conjecture how many there are for all n.

(10) The symmetric functions are endowed with an inner product, where

$$\langle s_{\lambda}, s_{\mu} \rangle = \begin{cases} 1 & \text{if } \lambda = \mu \\ 0 & \text{otherwise} \end{cases}$$

and the scalar product is a bi-linear form (that is for symmetric functions F, G, H, Kand for coefficients $a, b, c, d \in \mathbb{Q}$, $\langle aF + bG, cH + dK \rangle = ac \langle F, H \rangle + ad \langle F, K \rangle + bc \langle G, H \rangle + bd \langle G, K \rangle$. Compute the following examples:

- (a) $\langle 4s_{31} 3s_{22} + s_{1111} + 12s_{211} 2s_4, s_{22} \rangle$
- (b) $\langle 4s_{31} 3s_{22} + s_{1111} + 12s_{211} 2s_4, 4s_{31} 3s_{22} + s_{1111} + 12s_{211} 2s_4 \rangle$
- (c) $\langle 4h_{31} 3h_{22} + h_{1111} + 12h_{211} 2h_4, s_{22} \rangle$
- (d) $\langle 4h_{31} 3h_{22} + h_{1111} + 12h_{211} 2h_4, 4h_{31} 3h_{22} + h_{1111} + 12h_{211} 2h_4 \rangle$
- (e) $\langle h_1, h_1 \rangle, \langle h_{11}, h_{11} \rangle, \langle h_{111}, h_{111} \rangle, \langle h_{1111}, h_{1111} \rangle$
- (11) The scalar product can be used to expand a symmetric function in the Schur basis. Prove that for any symmetric function F,

$$F = \sum_{\lambda} \left\langle F, s_{\lambda} \right\rangle s_{\lambda}$$

- (12) Compute the *h*-expansion of s_{221} using the Pieri rule following this procedure.
 - (a) Compute $h_2 s_{21} = s_{221} + \text{terms higher}$
 - (b) Rearrange this equation to read $s_{221} = h_2 s_{21}$ terms higher
 - (c) Now recursively use the Pieri rule to expand each of the terms on the right hand side of this equation by computing $h_{\lambda_1}s_{(\lambda_2,\lambda_3,\dots,\lambda_\ell)} = s_{\lambda}$ + terms higher.

Example: $h_{21} = h_2 s_1 = s_{21} + s_3$ so then we can solve for the Schur function s_{21} and find that $s_{21} = h_{21} - s_3 = h_{21} - h_3$. Now this last expression is the same as $det \begin{bmatrix} h_2 & h_3 \\ h_3 & h_3 \end{bmatrix}$.

$$\begin{bmatrix} 1 & h_1 \end{bmatrix}$$

(13) We can then use this scalar product to define the operation which is "dual" to multiplication. For two symmetric functions F and G define $F^{\perp}G$ to be the symmetric function such that $\langle F^{\perp}G, s_{\lambda} \rangle = \langle G, F \cdot s_{\lambda} \rangle$. Find a formula for the Schur expansion of $h_r^{\perp} s_{\lambda}$.