HOMEWORK ASSIGNMENT NO. 4

DATE ASSIGNED: OCOBER 9, 2019; DUE: WEDNESDAY, OCTOBER 23, 2019

In a proof by induction, be sure to clearly indicate your base case, inductive assumption and your conclusion (you must have a statement which says that you conclude that some statement is true for all values greater than the base case).
(1) Let $L_{1}=1, L_{2}=3$ and $L_{n+1}=L_{n}+L_{n-1}$ for $n \geq 3$. Prove by induction that

$$
L_{n}=\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

for $n \geq 1$.
(2) Prove (by induction) that for all $n \geq 1$,

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]^{n}=\left[\begin{array}{llc}
1 & n & \frac{n(n-1)}{2} \\
0 & 1 & n \\
0 & 0 & 1
\end{array}\right]
$$

Prove the same result holds true for all $n<1$ as well.
(3) I've said in class that the complex solutions to $z^{n}=1$ are all equally spaced about a circle of radius 1 about the origin. To show this properly, you would need to know that the sum of the x coordinates of all these points are all 0 and the sum of the y coordinates are all 0 . Note: showing that the sum of the y coordinates is all 0 , (what I am asking in part (a) of this problem) does not require induction and will probably handle n even and n odd differently because if n is even there are two points on the x-axis and if n is odd there is only one point on the x-axis.
(a) Show that for all $n \geq 1$,

$$
\sin (0)+\sin (2 \pi / n)+\sin (4 \pi / n)+\cdots+\sin ((2 n-2) \pi / n)=0 .
$$

(b) Show that for all $n \geq 0$,

$$
1+\cos x+\cos (2 x)+\cdots+\cos (n x)=1+\frac{\cos \left(\frac{(n+1) x}{2}\right) \sin \left(\frac{n x}{2}\right)}{\sin \left(\frac{x}{2}\right)}
$$

Explain clearly what trigonometric identities that you used in your proof and then use this identity to show that

$$
\cos (0)+\cos (2 \pi / n)+\cos (4 \pi / n)+\cdots+\cos ((2 n-2) \pi / n)=0
$$

