HOMEWORK \#5

DATE GIVEN: OCTOBER 28, 2019 DUE: NOVEMBER 13, 2019
(1) Let n be an integer, and k be a positive integer. Justify the statement:
"The last k digits of n are divisible by 2^{k} if and only if n is divisible by 2^{k}. .
(2) Similarly, let n be an integer, justify the statement
"The sum of the digits of n is divisible by 9 , if and only if n is divisible by 9 ."
(3) Show that 3^{n+1} divides $2^{3^{n}}+1$ for all $n \geq 0$.
(4) The following is a justification for the statement
"if 3 divides n^{2}, then 3 divides n."
Let n be a positive integer such that n^{2} is a multiple of 3 . Then $n=3 m$ where m is some positive integer. So $n^{2}=(3 m)^{2}=9 m^{2}=3\left(3 m^{2}\right)$. This breaks down into $3 m$ times $3 m$ which shows that m is a multiple of 3 .

Read this argument critically. Is the argument correct, i.e., does it make sense logically? What is the reason each sentence is true? If the argument is not correct, is there a minor (notational or other) change that would yield a correct argument? Does the argument (or your minor revision) prove the result? If not, does it prove anything else? Justify your answers.

