HOMEWORK \#6

DATE GIVEN: NOVEMBER 13, 2019 DUE: NOVEMBER 27, 2019
Follow the instructions on the webpage for preparing this homework.
(1) Bob was born in 2000 and has a birthday on March 15. Find the day of the week his birthday occurred on in 2000 through 2019. Explain this pattern and find a way of determining the day of the week in any year.
Note: In the Gregorian calendar, years that are divisible by 100 , but not by 400 , do not contain a leap day. That means you need to figure out how the formula is correct until 2100 and then you should have a different formula.
(2) Every day of the week I bought the same lunch and always found that I received 3 quarters in change. At the end of some number of weeks, I rolled my quarters and there were 13 left over. What is the minimum number of weeks that I had been buying the same lunch? Note: Rolls of quarters come in 40's (total of \$10).
(3) Prove or disprove: Let a, b, c be integers. If $\operatorname{gcd}(a, b)=1$ and $c \mid(a+b)$, then $\operatorname{gcd}(a, c)=1$.
(4) Only one of the following two statements is true. Find a proof for one and a counterexample for the other. Let r and s be integers and a, b be positive integers.
(a) if $r \equiv s(\bmod a)$, then $r \equiv s(\bmod a b)$.
(b) if $r \equiv s(\bmod a b)$, then $r \equiv s(\bmod a)$.
(5) Let a and b be positive integers. Prove or disprove: If $b \equiv 0(\bmod a)$ and $a \equiv 0(\bmod b)$, then $a=b$.

