MATH 1200: Review for Midterm

1. Consider the following statement for integers x and y.

If 5x + 7y is even, then both x and y are even or both x and y are odd.

- (a) Prove the statement using a proof by contradiction.
- (b) Prove the statement by writing 5x + 7y = 2z for some integer z and manipulating this expression to represent x y as a multiple of 2.
- 2. Prove or disprove, the sum of any four consecutive integers is even.
- 3. Prove or disprove, the sum of any six consecutive integers is odd.
- 4. Let a and b be integers. Prove or disprove that, if ab is even and a is odd, then b must be even.
- 5. Let a, b, c, d be integers. Prove or disprove that, if a b is even and c d is even then ac bd is even.
- 6. Let a, b, c, d be integers. Prove or disprove that, if a + b is even and c + d is even then ac + bd is even.
- 7. For each of the following statements, either provide a proof of the statement or an example showing the statement is false:
 - (a) If a and b are both rational and $b \neq 0$ then a/b is rational.
 - (b) If a and b are both irrational and $b \neq 0$ then a/b is rational.
 - (c) If a and b are both rational then ab is rational.
 - (d) If a and b are both irrational then ab is rational.
 - (e) If a and b are both irrational then ab is irrational.
 - (f) If a is irrational and b is rational such that $b \neq 0$ then ab is irrational.
- 8. Prove that there is no complex number z, such that |z| z = i.
- 9. Find $z \in \mathbb{C}$ such that
 - (a) z = i(z 1)
 - (b) $z^2 \cdot \bar{z} = z$
- 10. Find $z \in \mathbb{C}$ such that $z^2 \in \mathbb{R}$
- 11. Compute the complex 5th roots of z = -1 i and express your solutions in both normal and polar form.

- 12. Find the complex solutions of the following equations and prove the geometric representation of these solutions
 - (a) |z i| = 2
 - (b) $(z+6)^3 = i$
- 13. Prove by induction that for every integer $n \geq 1$,

$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} \le 2\sqrt{n}$$

- 14. Prove by induction that if q is rational and $n \in \mathbb{Z}^+$ then $(\frac{q-1}{q^2+1})^n$ is rational.
- 15. Prove that for every positive integer n,

$$1 \cdot 2 + 2 \cdot 3 + \dots + n(n+1) = n(n+1)(n+2)/3$$
.

- 16. Use Mathematical Induction to prove that if n people stand in a line, n a positive integer at least 2, and the first person in the line is a woman and the last person in line is a man, somewhere in the line there is a woman directly in front of a man.
- 17. Prove by induction that $(1+a)^n \ge 1 + na$ for $n \ge 1$, where a > -1 is a fixed real number.
- 18. The triangle inequality says that for any two complex numbers x and y, $|x+y| \le |x| + |y|$. Show that for any n complex numbers x_1, x_2, \ldots, x_n , with $n \ge 2$ any integer,

$$|x_1 + x_2 + \dots + x_n| \le |x_1| + |x_2| + \dots + |x_n|$$