## A FEW WORDS ABOUT TELESCOPING SUMS

MIKE ZABROCKI

Say that you want to prove an identity of the form

$$
a_{1}+a_{2}+a_{3}+\cdots+a_{n}=b_{n}
$$

where $a_{1}, a_{2}, a_{3}, \ldots$ and $b_{0}, b_{1}, b_{2}, \ldots$ are sequences of numbers and $n$ is a non-negative integer with $b_{0}=0$. One way to go about this is to show that

$$
b_{r}-b_{r-1}=a_{r}
$$

for all $r \geq 1$, and then write down

$$
\begin{aligned}
b_{1}-b_{0} & =a_{1} \\
b_{2}-b_{1} & =a_{2} \\
b_{3}-b_{2} & =a_{3} \\
\vdots & \\
b_{n-1}-b_{n-2} & =a_{n-1} \\
b_{n}-b_{n-1} & =a_{n}
\end{aligned}
$$

Now the sum of the expressions on the right hand side of this equation is

$$
a_{1}+a_{2}+a_{3}+\cdots+a_{n-1}+a_{n}
$$

and the sum of the expressions on the left hand side of this equation is

$$
\left(b_{1}-b_{0}\right)+\left(b_{2}-b_{1}\right)+\left(b_{3}-b_{2}\right)+\cdots+\left(b_{n-1}-b_{n-2}\right)+\left(b_{n}-b_{n-1}\right)=b_{n}-b_{0}=b_{n} .
$$

We conclude therefore that

$$
a_{1}+a_{2}+a_{3}+\cdots+a_{n}=b_{n} .
$$

To summarize what I have just expressed above, I will state it as the following theorem.
Theorem 1. If $a_{1}, a_{2}, a_{3}, \ldots$ and $b_{0}, b_{1}, b_{2}, b_{3}, \ldots$ are two sequence of numbers satisfying

$$
b_{r}-b_{r-1}=a_{r}
$$

for each $r \geq 1$ and $b_{0}=0$, then

$$
a_{1}+a_{2}+a_{3}+\cdots+a_{n}=b_{n}
$$

for all $n \geq 1$.

Example There are lots of ways of proving the following identity.

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

Since $\frac{r(r+1)}{2}-\frac{(r-1) r}{2}=r$, we have

$$
\begin{gathered}
\frac{1 \cdot 2}{2}-\frac{0 \cdot 1}{2}=1 \\
\frac{2 \cdot 3}{2}-\frac{1 \cdot 2}{2}=2 \\
\frac{3 \cdot 4}{2}-\frac{2 \cdot 3}{2}=3 \\
\vdots \\
\frac{(n-1) \cdot n}{2}-\frac{(n-2) \cdot(n-1)}{2}=n-1 \\
\frac{n \cdot(n+1)}{2}-\frac{(n-1) \cdot n}{2}=n
\end{gathered}
$$

The sum of the terms on the left hand side of these equations is $\frac{n(n+1)}{2}$ and the sum of the terms on the right hand side of these equation is $1+2+3+\cdots+(n-1)+n$, therefore they are equal.

Example The formula for the sums of the squares of the first $n$ integers also has a formula as a product.

$$
1^{2}+2^{3}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

The general formula for the sums of the $k^{t h}$ powers of the first $n$ integers follows a pattern, but it is not easy to conjecture a general formula.

Calculate (using your best algebra skills ... I'm going to leave the calculation out of this example, but there is something to show here) that $\frac{r(r+1)(2 r+1)}{6}-\frac{(r-1)(r-1+1)(2(r-1)+1)}{6}=r^{2}$ and then this shows that

$$
\begin{gathered}
\frac{1 \cdot 2 \cdot 3}{6}-\frac{0 \cdot 1 \cdot 1}{6}=1^{2} \\
\frac{2 \cdot 3 \cdot 5}{6}-\frac{1 \cdot 2 \cdot 3}{6}=2^{2} \\
\frac{3 \cdot 4 \cdot 7}{6}-\frac{2 \cdot 3 \cdot 5}{6}=3^{2} \\
\frac{n(n+1)(2 n+1)}{6}-\frac{(n-1) n(2 n-1)}{6}=n^{2}
\end{gathered}
$$

The sum of the terms on the left hand side of these equations is $\frac{n(n+1)(2 n+1)}{6}$ and the sum of the terms on the right hand side is $1^{2}+2^{3}+3^{2}+\cdots+n^{2}$ and so they must be equal.

Example Define the Fibonacci sequence by $F_{0}=1, F_{1}=1$, and for $n \geq 0, F_{n+2}=$ $F_{n+1}+F_{n}$. Say that we want to show that

$$
F_{0}+F_{2}+F_{4}+\cdots+F_{2 n}=F_{2 n+1},
$$

or in words "The sum of the first $n$ Fibonacci numbers indexed by even $n$ is the next Fibonacci number indexed by odd $n$." So we know that for $r \geq 1, F_{2 r+1}-F_{2 r-1}=$ $F_{2 r}+F_{2 r-1}-F_{2 r-1}=F_{2 r}$. Therefore

$$
\begin{gathered}
F_{3}-F_{1}=F_{2} \\
F_{5}-F_{3}=F_{4} \\
F_{7}-F_{5}=F_{6} \\
\vdots \\
F_{2 n-1}-F_{2 n-3}=F_{2 n-2} \\
F_{2 n+1}-F_{2 n-1}=F_{2 n}
\end{gathered}
$$

Since the sum of the left hand side of these equations is $F_{2 n+1}-F_{1}=F_{2 n+1}-F_{0}$ and the sum of the right hand side of this equation is $F_{2}+F_{4}+F_{6}+\cdots+F_{2 n}$, we conclude that

$$
F_{0}+F_{2}+F_{4}+\cdots+F_{2 n}=F_{2 n+1} .
$$

Example Here is a general identity that can be fairly useful:

$$
\begin{aligned}
1 \cdot 2 \cdots k+2 & \cdot 3 \cdots(k+1)+3 \cdot 4 \cdots(k+2)+\cdots+n \cdot(n+1) \cdots(n+k-1) \\
& =n \cdot(n+1) \cdots(n+k) /(k+1)
\end{aligned}
$$

Observations: (1) if $k=1$, then this identity reduces to $1+2+3+\cdots+n=n(n+1) / 2$. (2) if $k=2$, then this identity reduces to $1 \cdot 2+2 \cdot 3+3 \cdot 4+n \cdot(n+1)=n(n+1)(n+2) / 3$. (3) there is shorthand notation that makes this sum easier to work with. Let $(a)_{k}=$ $a(a+1)(a+2) \cdots(a+k-1)$, then the identity becomes

$$
(1)_{k}+(2)_{k}+(3)_{k}+\cdots+(n)_{k}=(n)_{k+1} /(k+1)
$$

We note that

$$
\begin{aligned}
r \cdot & (r+1) \cdots(r+k) /(k+1)-(r-1) \cdot r \cdots(r+k-1) /(k+1) \\
& =r \cdot(r+1) \cdots(r+k-1)((r+k)-(r-1)) /(k+1) \\
& =r \cdot(r+1) \cdots(r+k-1)
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
1 \cdot 2 \cdots(k+1) /(k+1)-0 \cdot 1 \cdots k /(k+1) & =1 \cdot 2 \cdots k \\
2 \cdot 3 \cdots(k+2) /(k+1)-1 \cdot 2 \cdots(k+1) /(k+1) & =2 \cdot 3 \cdots(k+1) \\
3 \cdot 4 \cdots(k+3) /(k+1)-2 \cdot 3 \cdots(k+2) /(k+1) & =3 \cdot 4 \cdots(k+2)
\end{aligned}
$$

$(n-1) \cdot n \cdots(n+k-1) /(k+1)-(n-2) \cdot(n-1) \cdots(n+k-2) /(k+1)=(n-1) \cdot n \cdots(n+k-2)$ $n \cdot(n+1) \cdots(n+k) /(k+1)-(n-1) \cdot(n-2) \cdots(n+k-1) /(k+1)=n \cdot(n+1) \cdots(n+k-1)$ The sum of the entries on the left hand side of these equalities is $n \cdot(n+1) \cdots(n+k) /(k+1)$ and the sum of the entries on the right hand side of these equalities is

$$
1 \cdot 2 \cdots k+2 \cdot 3 \cdots(k+1)+3 \cdot 4 \cdots(k+2)+\cdots+n \cdot(n+1) \cdots(n+k-1)
$$

therefore the two expressions are equal.

One final observation: It is always possible to express $n^{k}$ as a sum in the notation $(n)_{r}$. $n^{1}=(n)_{1}, n^{2}=(n)_{2}-(n)_{1}, n^{3}=(n)_{3}-3(n)_{2}+(n)_{1}, n^{4}=(n)_{4}-6(n)_{3}+7(n)_{2}-(n)_{1}$. This can be used to give a sum of $1^{k}+2^{k}+3^{k}+\cdots+n^{k}$. The coefficients in this expansion are known as the Stirling numbers of the second kind.

Prove the following identities using telescoping sums.

$$
\begin{gather*}
1+3+5+\cdots+(2 n-1)=n^{2}  \tag{1}\\
\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{n}}=1-\frac{1}{2^{n}}  \tag{2}\\
x+x^{2}+x^{3}+\cdots+x^{n}=\frac{x^{n+1}-1}{x-1}-1  \tag{3}\\
1!\cdot 1+2!\cdot 2+3!\cdot 3+\ldots+n!\cdot n=(n+1)!-1 \tag{4}
\end{gather*}
$$

$$
\begin{equation*}
1+2+4+\cdots+2^{n}=2^{n+1}-1 \tag{8}
\end{equation*}
$$

If you have a problem with this last one, see the hint on the next page.
(9) Find a sequence of integers, $a_{1}, a_{2}, a_{3}, \ldots$, such that

$$
a_{1}+a_{2}+a_{3}+\cdots+a_{n}=n^{3} .
$$

(10) Find a sequence of integers, $a_{1}, a_{2}, a_{3}, \ldots$, such that

$$
a_{1}+a_{2}+a_{3}+\cdots+a_{n}=n(2 n+1) .
$$

(11) For each of the sums below, conjecture and prove a formula (ideally using telescoping sums, but you may have some ideas to prove the same thing a different way).

$$
\begin{gathered}
1+4+7+\cdots+(3 n-2) \\
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{(n-1) n}
\end{gathered}
$$

Notice that some of the expressions that you are asked to prove don't quite fit the telescoping sums model because if you let the right hand side be $b_{n}$, then $b_{0} \neq 0$. There are ways of fixing this. The first is to try to subtract something from both sides of the equation so that if you set $b_{n}$ equal to the right hand side, then $b_{0}=0$. The second is to shift your indices on $n$ so that $n$ is replaced by $n-1$ or $n+1$.

