
A FEW WORDS ABOUT TELESCOPING SUMS

MIKE ZABROCKI

Say that you want to prove an identity of the form

a1 + a2 + a3 + · · ·+ an = bn

where a1, a2, a3, . . . and b0, b1, b2, . . . are sequences of numbers and n is a non-negative
integer with b0 = 0. One way to go about this is to show that

br − br−1 = ar

for all r ≥ 1, and then write down

b1 − b0 = a1
b2 − b1 = a2
b3 − b2 = a3

...

bn−1 − bn−2 = an−1

bn − bn−1 = an
Now the sum of the expressions on the right hand side of this equation is

a1 + a2 + a3 + · · ·+ an−1 + an

and the sum of the expressions on the left hand side of this equation is

(b1 − b0) + (b2 − b1) + (b3 − b2) + · · ·+ (bn−1 − bn−2) + (bn − bn−1) = bn − b0 = bn .

We conclude therefore that

a1 + a2 + a3 + · · ·+ an = bn .

To summarize what I have just expressed above, I will state it as the following theorem.

Theorem 1. If a1, a2, a3, . . . and b0, b1, b2, b3, . . . are two sequence of numbers satisfying

br − br−1 = ar

for each r ≥ 1 and b0 = 0, then

a1 + a2 + a3 + · · ·+ an = bn

for all n ≥ 1.
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Example There are lots of ways of proving the following identity.

1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
.

Since r(r+1)
2 − (r−1)r

2 = r, we have

1 · 2
2
− 0 · 1

2
= 1

2 · 3
2
− 1 · 2

2
= 2

3 · 4
2
− 2 · 3

2
= 3

...
(n− 1) · n

2
− (n− 2) · (n− 1)

2
= n− 1

n · (n + 1)

2
− (n− 1) · n

2
= n

The sum of the terms on the left hand side of these equations is n(n+1)
2 and the sum of the

terms on the right hand side of these equation is 1 + 2 + 3 + · · · + (n − 1) + n, therefore
they are equal.



A FEW WORDS ABOUT TELESCOPING SUMS 3

Example The formula for the sums of the squares of the first n integers also has a formula
as a product.

12 + 23 + 32 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
The general formula for the sums of the kth powers of the first n integers follows a pattern,
but it is not easy to conjecture a general formula.

Calculate (using your best algebra skills ... I’m going to leave the calculation out of this

example, but there is something to show here) that r(r+1)(2r+1)
6 − (r−1)(r−1+1)(2(r−1)+1)

6 = r2

and then this shows that
1 · 2 · 3

6
− 0 · 1 · 1

6
= 12

2 · 3 · 5
6

− 1 · 2 · 3
6

= 22

3 · 4 · 7
6

− 2 · 3 · 5
6

= 32

...
n(n + 1)(2n + 1)

6
− (n− 1)n(2n− 1)

6
= n2

The sum of the terms on the left hand side of these equations is n(n+1)(2n+1)
6 and the sum

of the terms on the right hand side is 12 + 23 + 32 + · · ·+ n2 and so they must be equal.
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Example Define the Fibonacci sequence by F0 = 1, F1 = 1, and for n ≥ 0, Fn+2 =
Fn+1 + Fn. Say that we want to show that

F0 + F2 + F4 + · · ·+ F2n = F2n+1,

or in words “The sum of the first n Fibonacci numbers indexed by even n is the next
Fibonacci number indexed by odd n.” So we know that for r ≥ 1, F2r+1 − F2r−1 =
F2r + F2r−1 − F2r−1 = F2r. Therefore

F3 − F1 = F2

F5 − F3 = F4

F7 − F5 = F6

...

F2n−1 − F2n−3 = F2n−2

F2n+1 − F2n−1 = F2n

Since the sum of the left hand side of these equations is F2n+1 − F1 = F2n+1 − F0 and the
sum of the right hand side of this equation is F2 + F4 + F6 + · · ·+ F2n, we conclude that

F0 + F2 + F4 + · · ·+ F2n = F2n+1 .
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Example Here is a general identity that can be fairly useful:

1 · 2 · · · k + 2 · 3 · · · (k + 1) + 3 · 4 · · · (k + 2) + · · · + n · (n + 1) · · · (n + k − 1)

= n · (n + 1) · · · (n + k)/(k + 1)

Observations: (1) if k = 1, then this identity reduces to 1 + 2 + 3 + · · ·+ n = n(n + 1)/2.
(2) if k = 2, then this identity reduces to 1 · 2 + 2 · 3 + 3 · 4 +n · (n+ 1) = n(n+ 1)(n+ 2)/3.
(3) there is shorthand notation that makes this sum easier to work with. Let (a)k =
a(a + 1)(a + 2) · · · (a + k − 1), then the identity becomes

(1)k + (2)k + (3)k + · · ·+ (n)k = (n)k+1/(k + 1)

We note that

r·(r + 1) · · · (r + k)/(k + 1) − (r − 1) · r · · · (r + k − 1)/(k + 1)

= r · (r + 1) · · · (r + k − 1)((r + k) − (r − 1))/(k + 1)

= r · (r + 1) · · · (r + k − 1) .

Therefore we have

1 · 2 · · · (k + 1)/(k + 1)− 0 · 1 · · · k/(k + 1) = 1 · 2 · · · k
2 · 3 · · · (k + 2)/(k + 1)− 1 · 2 · · · (k + 1)/(k + 1) = 2 · 3 · · · (k + 1)

3 · 4 · · · (k + 3)/(k + 1)− 2 · 3 · · · (k + 2)/(k + 1) = 3 · 4 · · · (k + 2)
...

(n−1)·n · · · (n+k−1)/(k+1)−(n−2)·(n−1) · · · (n+k−2)/(k+1) = (n−1)·n · · · (n+k−2)

n ·(n+1) · · · (n+k)/(k+1)−(n−1) ·(n−2) · · · (n+k−1)/(k+1) = n ·(n+1) · · · (n+k−1)

The sum of the entries on the left hand side of these equalities is n·(n+1) · · · (n+k)/(k+1)
and the sum of the entries on the right hand side of these equalities is

1 · 2 · · · k + 2 · 3 · · · (k + 1) + 3 · 4 · · · (k + 2) + · · · + n · (n + 1) · · · (n + k − 1),

therefore the two expressions are equal.

One final observation: It is always possible to express nk as a sum in the notation (n)r.
n1 = (n)1, n

2 = (n)2 − (n)1, n
3 = (n)3 − 3(n)2 + (n)1, n

4 = (n)4 − 6(n)3 + 7(n)2 − (n)1.
This can be used to give a sum of 1k + 2k + 3k + · · ·+nk. The coefficients in this expansion
are known as the Stirling numbers of the second kind.
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Prove the following identities using telescoping sums.

(1)
1 + 3 + 5 + · · ·+ (2n− 1) = n2

(2)
1

2
+

1

4
+

1

8
+ · · ·+ 1

2n
= 1− 1

2n

(3)

x + x2 + x3 + · · ·+ xn =
xn+1 − 1

x− 1
− 1

(4)
1! · 1 + 2! · 2 + 3! · 3 + . . . + n! · n = (n + 1)!− 1

(5)

12 + 32 + 52 + . . . + (2n− 1)2 =
n(4n2 − 1)

3
(6)

13 + 33 + 53 + . . . + (2n− 1)3 = n2(2n2 − 1)

(7)
1

1 · 5
+

1

5 · 9
+

1

9 · 13
+ · · ·+ 1

(4n− 3)(4n + 1)
=

n

4n + 1

(8)
1 + 2 + 4 + · · ·+ 2n = 2n+1 − 1

If you have a problem with this last one, see the hint on the next page.

(9) Find a sequence of integers, a1, a2, a3, . . ., such that

a1 + a2 + a3 + · · ·+ an = n3 .

(10) Find a sequence of integers, a1, a2, a3, . . ., such that

a1 + a2 + a3 + · · ·+ an = n(2n + 1) .

(11) For each of the sums below, conjecture and prove a formula (ideally using tele-
scoping sums, but you may have some ideas to prove the same thing a different
way).

1 + 4 + 7 + · · ·+ (3n− 2) .
1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · ·+ 1

(n− 1)n
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Notice that some of the expressions that you are asked to prove don’t quite fit the
telescoping sums model because if you let the right hand side be bn, then b0 6= 0. There
are ways of fixing this. The first is to try to subtract something from both sides of the
equation so that if you set bn equal to the right hand side, then b0 = 0. The second is to
shift your indices on n so that n is replaced by n− 1 or n + 1.


