1. Show that for $n \ge 1$,

$$\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n}{2^n} = \frac{2^{n+1} - n - 2}{2^n}$$

- 2. Let x, y and a be real numbers. Prove that if $x + y \ge 2a$, then $x \ge a$ or $y \ge a$.
- 3. Let $f(n) = \frac{1}{1\cdot 4} + \frac{1}{4\cdot 7} + \frac{1}{7\cdot 10} + \dots + \frac{1}{(3n-2)(3n+1)}$.
 - (a) Calculate f(1), f(2), f(3), f(4).
 - (b) Conjecture a formula for f(n) for $n \ge 1$.
 - (c) Prove your formula by induction.
- 4. Find a and b such that a and b are real and

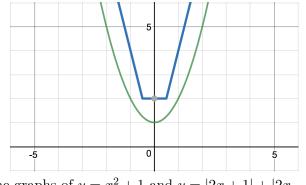
$$a+bi=\frac{1+i}{1-i} \ .$$

- 5. Find all complex values of x such that $x^2 = 1 + i$.
- 6. Prove that if a is rational and b is irrational then a + b is irrational and ab is irrational.
- 7. Let $a_0, a_1, a_2, a_3, \ldots$ be a sequence of numbers for $n \ge 0$ defined so that $a_0 = 1$ and $a_n = 4a_{n-1} n$ for $n \ge 1$. Prove that $a_n = \frac{5 \cdot 4^n + 3n + 4}{9}$.
- 8. Prove that for $n \ge 1$,

$$(x+y)^{n} = C(n,0)x^{n} + C(n,1)x^{n-1}y + C(n,2)x^{n-2}y^{2} + \dots + C(n,n-1)xy^{n-1} + C(n,n)y^{n}$$

where the numbers C(n,k) are defined for $n \ge 1$, C(n,0) = C(n,n) = 1 and C(n,k) = C(n-1,k-1)1) + C(n-1,k) for $1 \le k \le n-1$.

- 9. Prove or disprove the statement: "If x is a real number s.t. $x^2 + 1 \le 0$, then $|2x + 1| + |2x 1| \le 4$."
- 10. Prove or disprove the statement: "If x is a real number s.t. $x^2 + 1 \le 1$, then $|2x + 1| + |2x 1| \le 4$."
- 11. Prove or disprove the statement: "If x is a real number s.t. $x^2 + 1 \le 2$, then $|2x + 1| + |2x 1| \le 4$."
- 12. Prove or disprove the statement: "If x is a real number s.t. $x^2 + 1 \le 5$, then $|2x + 1| + |2x 1| \le 4$."



The graphs of $y = x^2 + 1$ and y = |2x + 1| + |2x - 1|.