SOME PRACTICE PROBLEMS

- (1) Prove that if a is not divisible by 3 then neither is a^2 .
- (2) Using the first part, prove that $\sqrt{15}$ is not rational.
- (3) Using the second part, prove by contradiction that $\sqrt{3} + \sqrt{5}$ is not rational.
- (4) Prove that if z, w and y are complex numbers then x(w+y) = xw + xy.
- (5) Prove that if z is a complex number then $(z + \overline{z})/2$ is equal to the real part of z.
- (6) Prove that for any $n \ge 2$ the sum of all of the n^{th} roots of unity is a real number.
- (7) Prove that $\sum_{j=1}^{n} \frac{1}{j(j+1)(j+2)} = \frac{n(n+3)}{4(n+1)(n+2)}$ for all $n \ge 1$.
- (8) Prove that $17n^3 + 103n$ is divisible by 6 for all integers n.
- (9) Prove that if x > 0 is any fixed real number then $(1+x)^n > 1 + nx$ for all $n \ge 2$.
- (10) A sequence of real numbers is a function $a: \mathbb{N} \to \mathbb{R}$ and this is often represented by $(a(n))_{n=1}^{\infty}$ namely a(n) is the value of the function at n. Express the following statements about sequences using quantifiers, without any negation symbol in front of a quantifier:
 - (a) The sequence $(a(n))_{n=1}^{\infty}$ is constant.

 - (a) The sequence (a(n))_{n=1}ⁿ is not constant.
 (b) The sequence (a(n))_{n=1}[∞] is not constant.
 (c) The sequence (a(n))_{n=1}[∞] is not eventually constant.
 (d) The sequence ((a(n))_{n=1}[∞] is not eventually constant.

 - (e) The sequence (a(n))_{n=1}[∞] is increasing.
 (f) The sequence (a(n))_{n=1}[∞] is not increasing.
 - (g) Forevery $\epsilon > 0$ there is some $M \in \mathbb{N}$ such that if n > M then $|a(n)| < \epsilon$ or, in other words, $\lim_{n\to\infty} a(n) = 0$.
 - (h) $\lim_{n\to\infty} a(n) \neq 0$.
 - (i) The sequence $(a(n))_{n=1}^{\infty}$ is bounded.
- (11) Prove that if hcf(a,b) = d then hcf(a/d,b/d) = 1.
- (12) Prove that if hcf(a, b) = d and k and b are coprime then hcf(ka, b) = d
- (13) Prove that if m/n and and j/k are fractions represented in lowest common terms and m/n + j/k is an integer then n = k.
- (14) Prove that $(-1)^2 \equiv 1 \pmod{m}$ for all $m \geq 2$. (15) Prove that $(-2)^2 \equiv 4 \pmod{m}$ for all $m \geq 2$.
- (16) Calculate 5^{-1} modulo 13.
- (17) Prove that

$$\binom{n+m}{k} = \binom{n}{0}\binom{m}{k} + \binom{n}{1}\binom{m}{k-1} + \binom{n}{2}\binom{m}{k-2} + \dots + \binom{n}{k}\binom{m}{0}$$
where $\binom{a}{b}$ is interpreted to be 0 if $b > a$.

SOME PRACTICE PROBLEMS

(18) Let f and g be functions from \mathbb{R} to \mathbb{R} that have derivatives of all orders. Let $h^{(k)}$ denote the k^{th} derivative of any function. Prove using the product rule for derivatives, the fact that $\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$ and induction that $(fa)^{(n)} = \sum_{k=1}^{n} \binom{n}{k} f^{(k)} a^{(n-k)}$

$$(fg)^{(n)} = \sum_{k=0} {n \choose k} f^{(k)}g^{(n-k)}.$$

- (19) The Fibonacci numbers are defined recursively by $F_{n+2} = F_{n+1} + F_n$. Prove that the number of subsets of $\{1, 2, 3, ..., n\}$ containing no two successive integers is F_n .
- (20) Prove that

$$n2^{n-1} = 0 \cdot \binom{n}{0} + 1 \cdot \binom{n}{1} + 2 \cdot \binom{n}{2} + \dots + n \cdot \binom{n}{n}$$