SOME PRACTICE PROBLEMS

(1) Prove that if a is not divisible by 3 then neither is a^{2}.
(2) Using the first part, prove that $\sqrt{15}$ is not rational.
(3) Using the second part, prove by contradiction that $\sqrt{3}+\sqrt{5}$ is not rational.
(4) Prove that if z, w and y are complex numbers then $x(w+y)=x w+x y$.
(5) Prove that if z is a complex number then $(z+\bar{z}) / 2$ is equal to the real part of z.
(6) Prove that for any $n \geq 2$ the sum of all of the $n^{t h}$ roots of unity is a real number.
(7) Prove that $\sum_{j=1}^{n} \frac{1}{j(j+1)(j+2)}=\frac{n(n+3)}{4(n+1)(n+2)}$ for all $n \geq 1$.
(8) Prove that $17 n^{3}+103 n$ is divisible by 6 for all integers n.
(9) Prove that if $x>0$ is any fixed real number then $(1+x)^{n}>1+n x$ for all $n \geq 2$.
(10) A sequence of real numbers is a function $a: \mathbb{N} \rightarrow \mathbb{R}$ and this is often represented by $(a(n))_{n=1}^{\infty}$ namely $a(n)$ is the value of the function at n. Express the following statements about sequences using quantifiers, without any negation symbol in front of a quantifier:
(a) The sequence $(a(n))_{n=1}^{\infty}$ is constant.
(b) The sequence $(a(n))_{n=1}^{\infty}$ is not constant.
(c) The sequence $(a(n))_{n=1}^{\infty}$ is eventually constant.
(d) The sequence $\left((a(n))_{n=1}^{\infty}\right.$ is not eventually constant.
(e) The sequence $(a(n))_{n=1}^{\infty}$ is increasing.
(f) The sequence $(a(n))_{n=1}^{\infty}$ is not increasing.
(g) Forevery $\epsilon>0$ there is some $M \in \mathbb{N}$ such that if $n>M$ then $|a(n)|<\epsilon$ or, in other words, $\lim _{n \rightarrow \infty} a(n)=0$.
(h) $\lim _{n \rightarrow \infty} a(n) \neq 0$.
(i) The sequence $(a(n))_{n=1}^{\infty}$ is bounded.
(11) Prove that if $h c f(a, b)=d$ then $h c f(a / d, b / d)=1$.
(12) Prove that if $h c f(a, b)=d$ and k and b are coprime then $h c f(k a, b)=d$
(13) Prove that if m / n and and j / k are fractions represented in lowest common terms and $m / n+j / k$ is an integer then $n=k$.
(14) Prove that $(-1)^{2} \equiv 1(\bmod m)$ for all $m \geq 2$.
(15) Prove that $(-2)^{2} \equiv 4(\bmod m)$ for all $m \geq 2$.
(16) Calculate 5^{-1} modulo 13.
(17) Prove that

$$
\binom{n+m}{k}=\binom{n}{0}\binom{m}{k}+\binom{n}{1}\binom{m}{k-1}+\binom{n}{2}\binom{m}{k-2}+\cdots+\binom{n}{k}\binom{m}{0}
$$

where $\binom{a}{b}$ is interpreted to be 0 if $b>a$.
(18) Let f and g be functions from \mathbb{R} to \mathbb{R} that have derivatives of all orders. Let $h^{(k)}$ denote the $k^{\text {th }}$ derivative of any function. Prove using the product rule for derivatives, the fact that $\binom{n}{k}+\binom{n}{k+1}=\binom{n+1}{k+1}$ and induction that

$$
(f g)^{(n)}=\sum_{k=0}^{n}\binom{n}{k} f^{(k)} g^{(n-k)} .
$$

(19) The Fibonacci numbers are defined recursively by $F_{n+2}=F_{n+1}+F_{n}$. Prove that the number of subsets of $\{1,2,3, \ldots, n\}$ containing no two successive integers is F_{n}.
(20) Prove that

$$
n 2^{n-1}=0 \cdot\binom{n}{0}+1 \cdot\binom{n}{1}+2 \cdot\binom{n}{2}+\cdots+n \cdot\binom{n}{n}
$$

