MATH 1200: Review for Final

- 1. For the following relations on the complex numbers (A) show that they are an equivalence relation and (B) find a description of the equivalence classes.
 - (a) $R_1 = \{(z_1, z_2) \in \mathbb{C} \times \mathbb{C} : Re(z_1) = Re(z_2) \text{ and } Im(z_1) = Im(z_2)\}$
 - (b) $R_2 = \{(z_1, z_2) \in \mathbb{C} \times \mathbb{C} : Re(z_1) = Re(z_2)\}$
 - (c) $R_3 = \{(z_1, z_2) \in \mathbb{C} \times \mathbb{C} : Im(z_1) = Im(z_2)\}$
 - (d) $R_4 = \{(z_1, z_2) \in \mathbb{C} \times \mathbb{C} : Re(z_1)Im(z_1) = Re(z_2)Im(z_2)\}$
 - (e) $R_5 = \{(z_1, z_2) \in \mathbb{C} \times \mathbb{C} : |z_1| = |z_2|\}$
 - (f) $R_6 = \{(z_1, z_2) \in \mathbb{C} \times \mathbb{C} : |Re(z_1)| = |Re(z_2)| \text{ and } |Im(z_1)| = |Im(z_2)|\}$
 - (g) $R_7 = \{(z_1, z_2) \in \mathbb{C} \times \mathbb{C} : ax = y \text{ for some real number } a > 0\}$
 - (h) $R_8 = \{(z_1, z_2) \in \mathbb{C} \times \mathbb{C} : ax = y \text{ for some real number } a \neq 0\}$
- 2. Determine if the following relations on the real numbers are reflexive, symmetric and/or transitive and provide an explanation.
 - (a) $R_1 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x| = y\}$ (b) $R_2 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x| \le |y|\}$ (c) $R_3 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x < y\}$ (d) $R_4 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x = y + 1 \text{ or } y = x + 1\}$ (e) $R_5 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x \le 2y\}$ (f) $R_6 = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x \ne 2y\}$
- 3. Let n be a positive integer and a, b, c, d be integers. Provide a proof of the following statements.
 - (a) $a \equiv a \pmod{n}$
 - (b) if $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$
 - (c) if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$
 - (d) if $a \equiv b \pmod{n}$ then $a + c \equiv b + c \pmod{n}$
 - (e) if $a \equiv b \pmod{n}$ then $a \cdot c \equiv b \cdot c \pmod{n}$
 - (f) if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a + c \equiv b + d \pmod{n}$
 - (g) if $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $a \cdot c \equiv b \cdot d \pmod{n}$
 - (h) if $c \cdot a \equiv c \cdot b \pmod{n}$, then it is not necessarily the case that $a \equiv b \pmod{n}$
 - (i) if $a \cdot b \equiv a \cdot c \pmod{n}$ and gcd(a, n) = 1, then $b \equiv c \pmod{n}$

- 4. Prove the following statements by induction.
 - (a) Prove that the sum of the cubes of 12 consecutive positive integers is divisible by 36.
 - (b) Show that if $a_n = 2a_{n-1} + (-1)^n$ and $a_0 = 2$ then show that $a_n = (5 \cdot 2^n + (-1)^n)/3$.

(c) For all integer
$$n \ge 2$$
, $\left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \left(1 - \frac{1}{4^2}\right) \cdots \left(1 - \frac{1}{n^2}\right) = \frac{n+1}{2n}$.

- (d) Prove that for all n > 6, $n^3 < 3^n < n!$.
- (e) Show that 8^n divides (4n)! for all $n \ge 0$.
- (f) Let a_1, a_2, \ldots, a_n be positive real numbers. Show that

$$\left(\sum_{i=1}^{n} a_i\right) \left(\sum_{i=1}^{n} \frac{1}{a_i}\right) \ge n^2$$

(g) Show that for $n \ge 1$, $\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}^n = \begin{bmatrix} \frac{5n+3}{4} & 3 \cdot \frac{5n-1}{4} \\ \frac{5n-1}{4} & \frac{3 \cdot 5n+1}{4} \end{bmatrix}$.

(h) Show that for
$$n > 0$$
, $1 + 2 + 4 + 5 + 7 + \dots + (3n - 1) + (3n + 1) = 3n^2 + 3n + 1$.

- 5. (a) Find all values of n > 0 such that $(1 i)^n$ is imaginary.
 - (b) Find all values of n > 0 such that $(1 i)^n$ is real.
 - (c) Find all values of $z \in \mathbb{C}$ such that $z^2 = (1 i)$.
 - (d) Find all values of $z \in \mathbb{C}$ such that $z^2 + 2z = -i$
 - (e) Find all values of $z \in \mathbb{C}$ such that $\overline{z} = i(z-1)$
 - (f) Find all values of $z \in \mathbb{C}$ such that $z^2 \overline{z} = z$
 - (g) Find all values of $z \in \mathbb{C}$ such that |z + 3i| = 3|z|
- 6. Let x, y be real numbers. For the following statements, either prove that they are true or provide a counterexample:
 - (a) If x + y is irrational, then at least one of x or y is irrational.
 - (b) If x + y is rational, then both x and y are rational.
 - (c) If x is rational, then there exists a rational number y such that $x \cdot y = 1$.
 - (d) Between any two rational numbers there is a rational number.
 - (e) For all real numbers x, there is a y such that $x \cdot y$ is rational.
 - (f) For all real numbers x, there is a y such that x + y is an integer.
 - (g) If x is a positive real number, then $x + 1/x \ge 2$.
 - (h) For n > 0 and x and y are positive real numbers such that $xy > n^2$, then either x > n or y > n