
PodCast Script
MATH 2590
Mike Zabrocki

Podcast on Digital Sound

We are Kimberly, Vhenus and Mark, and we aim to explain to you what sound is,

and how it is represented digitally.

Have you ever wondered what is sound? How is it that MP3s can one

tenth of the size2 and yet sound the same as CDs?

All sound is caused by some object vibrating. For example, when a guitar

string vibrates, it moves from side to side. When it moves to one side, it pushes

air particles on that side, causing them to push the ones in front of them,

causing them to push other ones, and so on. This causes an increase in air

pressure on that side and is called compression. Then, when the string begins

to move back to the other side, it pulls back on the air particles, dropping

pressure. This is called decompression. So we can say that compression and

decompression of air causes the sound that we hear.

Now we all know that all sounds don’t sound the same. There are two

main characteristics that differentiate different sounds: volume and pitch. We

all know what volume is – how loud or soft the sound is. Pitch is how high or

low it sounds, relative to other sounds. For example, a flute has a higher pitch

than a trombone. Mathematically, pitch is represented by frequency, which is

measured in Hertz (Hz). Hz is the number of times the compressions and

decompressions happen per second.

We can’t hear all sounds, however. Humans typically have a hearing

range of between 20Hz and 20000Hz. Dogs, on the other hand, can hear

between 40Hz and 60000Hz. This is why humans can’t hear dog whistles!

Volume is measured in decibels. At two extremes, a whisper quiet library

is at 30dB while a loud rock concert is at approximately 115dB.

Music is just a combination of different sounds at different volume levels

and pitches. When we listen to a CD, we’re listening to an uncompressed

recording that contains way more sound than our brain can actually process. On

the other hand, MP3s sound very similar, but are one tenth of the size. How

does this work?

There are two techniques that MP3 technology uses to compress file size.

The first has to do with psychoacoustics, the study of how humans perceive

sound, and the second has to do with compression of data.

Humans don’t actually hear all the sound that surrounds them. For

example, if there is one sound that is much louder than another, we only hear

the louder one. This is why you can’t hear a normal conversation happening

when a bus is passing by, as you can only hear the bus.

When compressing a file, MP3 technology takes advantage of this fact by

discarding sounds that are “masked” by other louder sounds. After the fact, we

don’t hear a difference as we wouldn’t have heard the left out sound anyway.

When the bus is passing by, whether or not your friend is talking, you’re not

going to hear them. So to save space, MP3 compression discards such

conversations in music.

The second technique that MP3 technology uses has to do with file

compression – getting rid of redundancies. This can be better explained by

using a picture.

Think of a picture with just a blue sky and yellow sand. From our

discussion on digital images, we know that computers store individual pixels.

Therefore, for the entire blue sky, it might store a blue pixel 20,000 times in

the picture. This is redundant as all 20,000 pixels are exactly the same. So

when compressed, the compression algorithm would just store 1 blue pixel and

then say it is repeated 20,000 times. Essentially, compression works by

combining all similar pixels into one, thus saving space.

When compressing a picture, you can set how much the degree of

compression should be. This is referred to as the tolerance. For instance, a low

tolerance level would treat light blue and medium blue pixels as redundant and

would store them as one colour. This would reduce the size, but would reduce

quality as well. On the other hand, a high tolerance level would result in the

compressor being more particular about colour differences, thus leading to a

more-detailed picture but a larger image file. The same file compression

technique can be used on sound.

So how does the whole process work? First, you set a tolerance level in

terms of the maximum number of bits that can be used to store one second of

audio. Once you set this tolerance, the song is broken down into frames,

similar to frames of a movie. The compressing algorithm analyzes each frame

and then discards masked audio based on psychoacoustic models. This

eliminates sounds that humans wouldn’t have heard anyway.

The song is then put back together to form a bit-stream and this is then

run through the process of Huffman encoding, eliminating redundant data.

Overall, after both compression techniques, the total number of bits per

second will not exceed the set tolerance level. Thus, the same principle applies

to sound as it did pictures – the lower the tolerance, the more data that has to

be discarded, and the lower the quality of the resulting music.

Some principles to note are that the initial psychoacoustic-based

compression is “lossy”, indicating that the process destroys some information,

and therefore it cannot be reversed. On the other hand, the Huffman

compression, which is referred to as “lossless”, works similar to a zip file. It

gets rid of redundant data, but can be put back to form the original at any

t ime.

Huffman compression, and by extension most lossless compression,

works in the following manner. For text, characters are typically represented

by 8 bits each. This allows for 256 possible characters. However, in most

circumstances, all the possible characters are not used, and thus there are an

unnecessary number of possible combinations of those 8 bits. Therefore, the

number of bits required to represent each character is reduced based on the

total number of characters in the content. For example, if the compressed

content only requires 50 different characters, these can be represented using

only 6 bits per character.

Huffman compression takes this one step further by using a variable

number of bits for each character. Frequently used characters are given a

shorter bit sequence while others that are more seldom used are given longer

bit sequences. This further reduces the total number of bits that have to be

used to represent a set of data.

All of this enables each of us to compress enormous volumes of music

and carry in our pockets entire libraries of music!

Bibliography

1 http://en.wikipedia.org/wiki/Audio_compression_(data)

2 http://en.wikipedia.org/wiki/MP3

3 http://www.cs.wfu.edu/~burg/CCLI/Templates/home.php

4 http://oreilly.com/catalog/mp3/chapter/ch02.html#80629

