
NOTES ON NOV 13, 2012

MIKE ZABROCKI

In the previous class I had set up that we wanted to show the orbit-stablizer theorem.
That is, we want to show,

|Ox| · |Stab(x)| = |G| .
Recall a couple of statements we have so far:

• if G acts on x, then Stab(x) = {g : g • x = x} is a subgroup of G
• For any subgroup H, ≡H is an equivalence relation on G

From last time I introduced the vocabulary and notation: orbit Ox, stabilizer Stab(x),
subgroup, reflexive relation, symmetric relation, transitive relation, equivalence relation,
equivalence class Ca. I realize that this a vocabulary heavy period of the course, but these
concepts are given names because they come up over and over in group theory.

I set up two other statements that I need to use to justify the orbit-stabilizer theorem.

(1) If Ca and Cb are the equivalence classes of a and b under some equivalence relation,
then either Ca and Cb have no elements in common or the two sets Ca and Cb are
equal.

(2) In particular, with the equivalence classes of the relation ≡H , all equivalence classes
have the same number of elements.

Since I want to justify these statements, let me give a few examples of equivalence
relations and equivalence classes so that we can convince ourselves that at least these
statements are true on some small examples. Also I want to convince you that there is
something important to show here and that statement number (2) is not always true.

Consider the set of colorings of the vertices of a triangle with B and W such that
two colorings are equivalent if one can be obtained from another by rotation. That is,
coloring1 ∼ coloring2 if there is a g ∈ {e,R120, R240} such that g • coloring1 = coloring2.
Lets try coloring the vertices of a triangle with b and w such that two colorings are distinct
if they are the same under a rotation of the shape. Lets draw them:
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I have drawn a loop around the colorings which are equivalent to each other under
rotation. These groupings are called the orbits under the action of the group. We have a
goal of counting the number of orbits in our set of colorings. We can see that there are
two orbits with one element each and two orbits with 3 elements each.

Lets consider one more example, but this time with our equivalence relation ≡H . This
time take our group G to be G = {e,R120, R240, F1, F2, F3} and the subgroup H =
{e,R120, R240} is used to define the equivalence relation g1 ≡H g2 if there exists an h ∈ H
such that g1h = g2.

I note that in particular we have that e ◦ R120 = R120 so we know that e ≡H R120. We
also have that R120 ◦ R120 = R240 then R120 ≡H R240. This also implies that e ≡H R240

because we know that this relation is transitive. It is the case that the only elements of G
which are equivalent to e are the elements of H because H is closed.

So then if we look at F1, we find that F1 ◦ R120 = (1)(23) ◦ (132) = (12)(3) = F3. We
also calculate that F3 ◦R120 = F2 and hence CF1 = {F1, F2, F3}.

One thing that is different about this example than the example with colorings of trian-
gles is that there are two equivalence classes and they are both of the same size. It turns
out with the equivalence relation ≡H the equivalence classes are all the same size. Its hard
to tell from a small example like this that the property continues.

Lemma 1. Let ∼ be an equivalence relation and set Ca = {x : x ∼ a} (the set of things
which are equivalent to a). If Ca and Cb have one element in common, then the sets are
equal.

In order to show why this is true, we need to show two sets are equal. The usual method
for doing this is to show that Ca ⊆ Cb and the reverse inclusion.

Proof. Say that Ca and Cb have an element d in common. That is, d ∼ a and d ∼ b. Since
∼ is symmetric, a ∼ d. Since ∼ is transitive and a ∼ d and d ∼ b, then a ∼ b. Let f be an
element in Ca. By definition of Ca, f ∼ a and since a ∼ b, then f ∼ b, hence f ∼ b and
f ∈ Cb. �

I then recalled that the statement A ⇒ B is logically equivalent to not A or B (I even
went so far as to draw the truth table for both of them to verify this). This means that
the sentence

If Ca and Cb have an element in common, then Ca = Cb.

is equivalent to

Either Ca and Cb don’t have an element in common, or Ca = Cb.

And this last statement is the same as (1).

Now since in an equivalence relation, every element is equivalent to some element because
(at the very least) it is equivalent to itself. Hence every element is in some equivalence
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class and these equivalence classes are all disjoint so they form a partition of the set of
elements.

Remark 2. You should note that a partition of a set also determines an equivalence
relation by declaring that a ∼ b is if a and b are in the same part of the set partition.
Therefore the number of set partitions on an n element set (the Bell numbers Bn given by
the sequence 1, 1, 2, 5, 15, 52, . . .) is equal to the number of distinct equivalence relations on
the set {1, 2, 3, . . . , n}.

I also showed that every equivalence class of the equivalence relation ≡H has the same
number of elements. This is a special property and holds because H and G are groups.
Let me rewrite the number of elements in the equivalence class of G. They are

Cg = {g′ : g′h = g for some h ∈ H} = {g′ : g′ = gh−1 for some h ∈ H} = {gh : h ∈ H}

The reason that the third equality is true is because H is a group so running over all
h−1 ∈ H is the same as running over all h ∈ H. I then defined new notation for the set on
the right hand side of the equality

gH := {gh : h ∈ H} .

These sets are called the (left) cosets of H.

What I want to show is that the equivalence classes of ≡H are all the same size as the
set H. Since the equivalence classes of ≡H are all of the form gH for some g, then all I
need to do is show that gH has the same size as H no matter what g ∈ G is. In order to
show that gH has the same size as H I need to find a bijection between the elements of H
and the elements of gH.

Lemma 3. The equivalence classes of ≡H which partition the set G all have the same size.
Since these equivalence classes are of the form gH for some g, they all have the same size
as the subgroup H = eH.

Proof. I want to define a bijection between H and gH. To do this I define the map φg
which maps subsets S ⊆ G to another subset φg(S) = {gk : for k ∈ S}. In particular,
φg(H) = gH. Because groups have so much structure, it will be the case that φg(H)
and H have the same number of elements because φg is a bijection. How do we know?
φg−1(φg(H)) = φg−1(gH) = φg−1({gh : h ∈ H}) = {g−1gh : h ∈ H} = H so there is a left
inverse. The same calculation also shows that φg(φg−1(H)) = H so there is a right inverse,
this means that φg is a bijection between H and gH and hence they have the same number
of elements. �

I claim now that we have enough facts about sets, orbits, stabilizers, equivalence classes,
groups, etc. to allow us to justify the orbit stabilizer theorem. We know that the stabilizer
is a subgroup of G, therefore the equivalence relation ≡Stab(x) partitions G and every
equivalence class has the same number of elements. Conclusion:
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|G| = |Stab(x)| · the number of different equivalence classes of ≡Stab(x)

But we want to show that |G| = |Stab(x)| · |Ox| so we just need to show that the
number of different equivalence classes = |Ox|. In general, to show that two sets of objects
have the same number of elements you show that there is a bijection between them. In
this case we are looking for a bijection between the set of equivalence classes of ≡Stab(x)

and the elements of Ox. Remember that the equivalence classes of ≡Stab(x) are the sets
gStab(x) = {gh : h ∈ Stab(x)}.

Lemma 4. the number of different equivalence classes of ≡Stab(x) is equal to the number
of elements in Ox.

Proof. What we will do is define a bijection between the equivalence classes of ≡Stab(x)

(the cosets gStab(x)) and the elements of Ox. For a coset g′Stab(x) of G, let ψ(g′Stab(x))
be defined as taking an element of g ∈ g′Stab(x) and the result is g • x. This maps a set
g′Stab(x) to an element of Ox. We need to show the following

(1) First, ψ must be well defined because there was some sort of arbitrary step that we
did when we we took ‘an element’ from g′Stab(x). How do we know that we get
the same result each time?

(2) Second, we need to show that if you take two cosets g′Stab(x) and g′′Stab(x) and
if we find that φ(g′Stab(x)) = φ(g′′Stab(x)), then g′Stab(x) = g′′Stab(x) (that is
we need to know that this map is 1-1).

(3) Finally, we need to know that every element in the orbit of x, y ∈ Ox, there some
coset g′Stab(x) such that ψ(g′Stab(x)) = y (that is that this map is onto).

If we have all three of these properties then we know that ψ is a well defined bijection
between the cosets of Stab(x) and the elements of Ox.

The first statement is true because if g1 and g2 are in g′Stab(x), then g1 = g′h1 and
g2 = g′h2 where h1 • x = h2 • x = x so then

g1 • x = (g′h1) • x = g′ • (h1 • x) = g′ • x = g′ • (h2 • x) = (g′h2) • x = g2 • x .

This says that no matter which elements we take from g′Stab(x) that we get the same
value g′ • x.

The second statement is true because if φ(gStab(x)) = φ(g′Stab(x)) then g • x = g′ • x
(because g ∈ gStab(x) and g′ ∈ g′Stab(x) so by part (1) we know we can take these in
particular) so

x = (g−1g) • x = g−1 • (g • x) = g−1 • (g′ • x) = (g−1g′) • x .

Therefore g−1g′ ∈ Stab(x) and so Stab(x) = {g−1g′h : h ∈ Stab(x)} and

gStab(x) = {gh : h ∈ Stab(x)} = {gg−1g′h : h ∈ Stab(x)} = {g′h : h ∈ Stab(x)} = g′Stab(x) .

The third statement is true because if y ∈ Ox then there is some element g ∈ G such
that y = gx (because that is what it means for y to be in the orbit of x). But then,
ψ(gStab(x)) = g • x = y. �
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Remark 5. The number of different equivalence classes of ≡H (or the number of different
left cosets of a subgroup H) is called the index of H in G. I wanted to avoid introducing
one more name, definition, notation in this case because we don’t really use it, but the
name occurs frequently in group theory.


