
NOTES ON NOV 15, 2012

MIKE ZABROCKI

In our last episode I showed you that,

|Ox| · |Stab(x)| = |G| .
We are just one short calculation away from the result that we have been building up to
for a while. Since I want to show it off, I am going to state it, give a bunch of examples
(actually I will revisit some of the examples that we looked at already) and then I will
justify why the formula is correct.

Theorem 1. (Burnside’s Lemma) Let G be a group which acts on a set of elements X,

The number of orbits when G acts on X = 1
|G|
∑

g∈G # of elements fixed by g .

The reason that I say that we have now reached the point where we have given a formula
for the examples that we have been discussing for the last couple of weeks is when we talk
about colorings being equal we mean that they are in the same orbit. When we talk about
different colorings, we are talking about two colorings being in different orbits under the
action of G. So when we want to know how many different colorings there are, we want to
know how many different orbits there are under the action of G and Burnside’s Lemma is
a formula for exactly that.

Remember on November 8 we figured out (by more or less writing down all possible
colorings) the number of colorings of the vertices of a triangle under the action of three
different groups, {e}, {e,R120, R240} and {e,R120, R240, F1, F2, F3}. We arrived at the
following table (there was a second column of this table but we will concentrate on just
the first column. As an exercise figure out how the formula applies to the second column):

group allowing repeated colors
{e} 33

{e,R120, R240} 11
{e,R120, R240, F1, F2, F3} 10

For the first row of this table it says that because the identity fixes all 33 possible
colorings of the triangle that the number that are different under the group {e} is equal to

1

|{e}|
33 =

1

1
· 27 = 27 .

This example isn’t very enlightening. But lets consider the other two.
When R120 and R240 act on the triangle, the only colorings that are fixed are those

where all three vertices are colored exactly the same, that is:
1
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That means that the total number of different colorings under the group {e,R120, R240} is
equal to

1

3
(33 + 3 + 3) =

1

3
· 33 = 11

and this agrees with the table that we had calculated before.
If we look under the action of F1, in addition to the three pictured colorings above, there

are 6 others:

So in total, there are 9 colorings which are fixed by F1. Similarly there are 9 which are
fixed by F2 and 9 which are fixed by F3. Burnside’s Lemma then tells us that the total
number of different colorings by the action of this group is equal to

1

6
(27 + 3 + 3 + 9 + 9 + 9) =

1

6
· 60 = 10 .

Recall that the group elements have the following cycle structure

e = (1)(2)(3), R120 = (132), R240 = (123), F1 = (1)(23), F2 = (2)(13), F3 = (3)(12) .

Unless there are other restrictions on the colors the number of elements in

Fix(g) = (# number of colors)(# of cycles in g)

In particular we see Fix(F1) = Fix(F2) = Fix(F3) = 32, Fix(R120) = Fix(R240) = 3
and Fix(e) = 33.

What is kind of cool about this formula is that just by looking at the expression, it is
not clear that the order of the group in the denominator is going to cancel with the sum
over the elements which are fixed by the group elements, but in the end it does. In fact,
we can use this as a (weak) check that we haven’t made any mistakes in our calculations
by ensuring that the denominator does cancel with the numerator. If you get a rational
number for the number of orbits, check again.

The reason this formula is useful, is that in general there are not that there are generally
more colorings than there are group elements and another reason is that it is usually not
that difficult to figure out how many elements are fixed by any particular group element g.
Moreover, a lot of group elements have the same number of elements of x which are fixed
by G.
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Let me try to count the number of ways of coloring the faces of a cube with colors black
and white such that two coloring are the same if one can be obtained from another by a
motion of the cube. Fortunately we have already calculated the group of the motions of
the cube. Label the faces of the cube with the letters A through F as in the following
diagram.

Recall that the group of motions of the cube consisted of the following elements.

e = (A)(B)(C)(D)(E)(F )

(A)(D)(BCEF )

(A)(D)(BE)(CF )

(A)(D)(BFEC)

(B)(E)(ACDF )

(B)(E)(AD)(CF )

(B)(E)(AFDC)

(C)(F )(ABDE)

(C)(F )(AD)(BE)

(C)(F )(AEDB)

(AB)(DE)(CF )

(AC)(DF )(BE)

(AE)(DB)(CF )

(AF )(DC)(BE)

(BC)(EF )(AD)

(BF )(EC)(AD)

(ABC)(DEF )

(ACB)(DFE)

(ABF )(DEC)

(AFB)(DCE)

(AEC)(DBF )

(ACE)(DFB)

(AEF )(DBC)

(AFE)(DCB)

• The identity (A)(B)(C)(D)(E)(F ) fixes all colorings and since we can choose b or
w for each face, there are 26 colorings which are fixed by the identity.
• Say that we fix two faces then there are two types of permutation, those that rotate

by ±90 degrees (e.g. (A)(D)(BCEF ) or (A)(D)(BFCE)) and those that rotate
by 180 degrees . The ones that rotate by ±90◦ fix all colorings where all the 4 faces
which move are the same color. There are two choices for the 4 faces and 2 choices
for each of the two fixed faces. In total there are 23 colorings which are fixed by
rotations by ±90◦.
• The ones that rotate by 180◦ (e.g. (A)(D)(BE)(CF )) fix all colorings where the

opposite faces that exchange are the same color. We have 2 choices for each of the
two fixed faces and 2 choices for the two pairs of faces which exchange. We can
read from the cycle structure of these permutations that there are 4 cycles and as
long as each cycle has the same color and so in total there are 24 ways of coloring
those faces.



4 MIKE ZABROCKI

• The permutations which fix an edge (e.g. (AB)(DE)(CF )) then there are three
pairs of faces which are exchanged and they must be colored the same color and so
there are 23 colorings which are fixed by these permutations.
• The permutations which fix a vertex and rotate by ±120◦ (e.g. (ABC)(DEF ) )

must have the three faces which are all clustered around the vertex that is being
rotated around all the same color therefore there are 22 colorings.

Look at the list of group elements above. We have:

• one identity element (A)(B)(C)(D)(E)(F )
• six rotations about two fixed faces by ±90◦ (e.g. (A)(D)(BCEF ))
• three rotations about two fixed faces by 180◦ (e.g. (A)(D)(BE)(CF ))
• six flips about an edge (e.g. (AB)(DE)(CF ))
• eight rotations about a vertex by ±120◦ (e.g. (ABC)(DEF ))

Burnside’s Lemma then says that the number of colorings of a cube with black and white
edges is equal to

1

24
(26 + 6 · 23 + 3 · 24 + 6 · 23 + 8 · 22) =

1

24
· 240 = 10 .

Now look back at your notes from October 30 and that was when we first started talking
about colorings of the cube. I then said that the generating function for the number of
colorings of the cube with black and white faces is:

(1) B0W 6 + B1W 5 + 2B2W 4 + 2B3W 3 + 2B4W 2 + B5W 1 + B6W 0

I will show you by the end of the class how we can give a formula for this generating
function but if you add up all of the coefficients (the total number of colorings) it is
1 + 1 + 2 + 2 + 2 + 1 + 1 = 10.

So I asked you on the homework to count the number of ways of coloring the vertices
of the trees with 7 vertices using k colors such that two colorings are equal if one can be
transformed to another by sending vertices to vertices and edges to edges. I thought I
would show a single example of how I would like you to apply this formula to answer this
question. Consider the colorings of the following graph.

Now notice that the group consisting of the identity and the motion which flips the tree
backwards are the only two elements which preserve the tree structure. I want to count
colorings where (for instance) the following two colorings are the same:

r r r r r r b
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b r r r r r r

The way that we will go about doing this is to first label the vertices of the tree with
the numbers 1 through 7 so that we can refer to them.

1 2 3 4 5 6 7

Then the two group elements which act on this tree are e = (1)(2)(3)(4)(5)(6)(7) and
(17)(26)(35)(4). Now under the the identity element every coloring is fixed and there are k
ways of coloring each of the 7 vertices so there are k7 colorings fixed by e. Now a coloring
which is fixed by (17)(26)(35)(4) must have vertex 1 and vertex 7 colored the same, 2
and 6 must be colored the same, 3 and 5 must be colored the same and 4 can be colored
independently. Since there are 4 different groups to color, in total Fix((17)(26)(35)(4)) =
k4 so Burnside’s Lemma says that there are

1

2
(k7 + k4)

different unique colorings of this graph. It is not clearly obvious that this result is even an
integer for all values of k, but it can be checked both for k even and for k odd that the
result is always an integer. If k = 1 we see for sure that the formula works because there
is then exactly 1 = 1

2(1 + 1) ways of coloring the graph with one color.

Great, now that we have three examples of how this formula works, I want to justify
why it is true. Fortunately it is a short calculation from the orbit-stabilizer theorem.

I need to introduce one bit of shorthand notation. Define

Fix(g) = #{x : g • x = g}

so then Burnside’s Lemma can then be restated as

The number of orbits when G acts on X = 1
|G|
∑

g∈G Fix(g) .

In order to make the first part of my calculation clear I am going to make a ta-
ble. Along the top of the table I label the columns by the xi which are in the set
X = {x1, x2, x3, . . . , x|X|}. Along the left side of the table I label the rows by gi which are
the elements of G = {g1, g2, . . . , g|G|} and in the body of the table I put a mark × in row
g and column x in my table if x is fixed by g (that is, if g • x = x).

So our table will typically look like the following where I am placing the × symbols in
the table in a way to indicate that for the average group element, some elements are fixed
and some are not. For the identity group element all elements are fixed (this is by the
definition of group action).
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G\X x1 x2 x3 · · · x|X|
e = g1 × × × · · · ×
g2 × · · ·
g3 × × · · · ×
g4 × × · · ·
...

...
...

... · · ·
...

g|G| × · · · ×

Now in the right hand column of the table I will count how many × symbols there are
in each row. I have already given this quantity a name. The number of × symbols in the
row indexed by gi is Fix(gi), the number of elements of my set X which are fixed by gi.

G\X x1 x2 x3 · · · x|X|
e = g1 × × × · · · × Fix(g1)
g2 × · · · Fix(g2)
g3 × × · · · × Fix(g3)
g4 × × · · · Fix(g4)
...

...
...

... · · ·
...

g|G| × · · · × Fix(g|G|)

Now below each column I will tally how many symbols × which appear in each column.
This quantity has also been given a name. The number of × symbols which appear in the
column indexed by xi is the number of group elements which fix xi or it is the number of
elements in the stabilizer of xi, |Stab(xi)|

G\X x1 x2 x3 · · · x|X|
e = g1 × × × · · · × Fix(g1)
g2 × · · · Fix(g2)
g3 × × · · · × Fix(g3)
g4 × × · · · Fix(g4)
...

...
...

...
...

...
g|G| × · · · × Fix(g|G|)

|Stab(x1)| |Stab(x2)| |Stab(x3)| · · · |Stab(x|X|)|

So now if I sum the last row of this table it is equal to the total number of × symbols
in the table and if I sum the last column it is also equal to the total number of × symbols
in the table, hence we have that:

(2)
∑
x∈X
|Stab(x)| =

∑
g∈G

Fix(g)
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The right hand side of this equality is the right hand side of Burnside’s Lemma multiplied

by |G|. We also know from the orbit-stabilizer theorem that |Stab(x)| = |G|
|Ox| . Say that the

set X breaks down into various orbits under the action of G and we number the orbits by
a single representative:

X = Ox1 ]Ox2 ]Ox3 ] · · · ]Oxtotal # orbits

Now then the left hand side of equation (2) is equal to

∑
x∈X
|Stab(x)| =

total # orbits∑
i=1

∑
x∈Oxi

|Stab(x)|

=

total # orbits∑
i=1

∑
x∈Oxi

|G|
|Ox|

= |G|
total # orbits∑

i=1

∑
x∈Oxi

1

|Oxi |

= |G|
total # orbits∑

i=1

|Oxi |
|Oxi |

= |G|
total # orbits∑

i=1

1

= |G| · total # orbits

Therefore we have show that |G| · total # orbits =
∑

g∈G Fix(g), so

total # orbits =
1

|G|
∑
g∈G

Fix(g)

Before I finished for the day I tried to squeeze in one more explanation. I wanted in
fact to explain the example with the coloring with squares from the example above, and in
particular I wanted to provide you with a formula for the generating function in equation
(1).

Burnside’s Lemma is quite robust because it just talks about a set X and it can be any
set of colorings with a group action on them. The thing about group actions when they
act on colorings is that the number of colors is independent of the element of the group
acting on it so Burnside’s Lemma says:

total # orbits of colorings with ai of ith color appearing =
1

|G|
∑
g∈G

Fixwith ai color i(g)
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where Fixwith ai color i(g) represents the number of colorings with a1 of color 1, a2 of color 2,
a3 of color 3, etc. and the phrase total # orbits of colorings with ai of ith color appearing
represents the subset of all of the distinct colorings with a1 of color 1, a2 of color 2, a3
of color 3, etc. Because the group action does not affect the number of each color that
appears, Burnside’s Lemma applies.

Now sum over all weights a = (a1, a2, a3, . . .) and multiply by za11 za22 za33 · · · .∑
a

(total # orbits of colorings with ai of ith color appearing) za11 za22 za33 · · ·

=
∑
a

 1

|G|
∑
g∈G

Fixwith ai color i(g)

 za11 za22 za33 · · ·

=
1

|G|
∑
g∈G

∑
a

(Fixwith ai color i(g) za11 za22 za33 · · · )

This is Polya’s Theorem.
The left hand side of this equation is called the pattern inventory of the set. It is the

generating function for the number of colorings where the coefficient of za11 za22 za33 · · · is the
number of colorings with a1 of color 1, a2 of color 2, a3 of color 3, etc.

The piece of the generating function
∑

a(Fixwith ai color i(g) za11 za22 za33 · · · ) on the right
hand side is called the cycle index polynomial. If you look at it in one light Polya’s Theorem
is Burnside’s Lemma with just a generating function replacing a number.

What is ingenious about this formula is that once we have the cycle structure of the
group element g, the cycle index polynomial is usually very easy to compute because we
can apply the multiplication principle of generating functions on the cycles. That is the
generating function for the cycle index polynomial of g which is a product of cycles c1, c2,
c3, etc. is equal to the product of the cycle index polynomial for c1 times the the cycle
index polynomial for c2 times the cycle index polynomial for c3 times etc.

For instance, consider again the group of the cube and colorings with two colors B and
W . Instead of the variables z1 and z2 I am going to use B and W in my cycle index
polynomial to make it clearer which is the first color and the second color.

With the identity element e = (A)(B)(C)(D)(E)(F ), we have that

6∑
i=0

(#colorings fixed by e with i W’s 6− i B’s) W iB6−i = (B + W )6.

There are two ways of deducing this. The first is to say that the number of colorings with
i white faces and 6− i black faces is equal to

(
6
i

)
and

∑6
i=0

(
6
i

)
W iB6−i = (B + W )6. The

other way to deduce it is to say that it is equal to the product of the generating function
for the colorings of the face A times the generating function for the colorings of the face B
times · · · the generating function for the number of colorings of the face F = (B + W )6.

Consider the element (A)(D)(BCEF ). The generating function for the colorings which
are fixed by this element is the product of the generating function for the colorings of the
face A times the generating function for the colorings of the face D times the generating
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function for the colorings of B, C, E and F . These last 4 need to be done together because
they all need to be the same to color. Therefore∑
a

(#colorings fixed by (A)(D)(BCEF ) with a1 W’s a2 B’s) W a1Ba2 = (B+W )2(B4+W 4).

Unless there are extra conditions placed on the colorings, it is easy to write down the
generating function for the colorings of a group element with cycles of length r1, r2, . . . , r`
because each cycle will have the same color so the generating function for a cycle of size r1
is always Br1 + W r1 and the generating function for the colorings which are fixed by g is

(Br1 + W r1)(Br2 + W r2) · · · (Br` + W r`) .

Therefore the rest of group elements have cycle index polynomials

• (B + W )6 for one identity element (A)(B)(C)(D)(E)(F )
• (B+W )2(B4+W 4) six rotations about two fixed faces by±90◦ (e.g. (A)(D)(BCEF ))
• (B+W )2(B2+W 2)2 three rotations about two fixed faces by 180◦ (e.g. (A)(D)(BE)(CF ))
• (B2 + W 2)3 six flips about an edge (e.g. (AB)(DE)(CF ))
• (B3 + W 3)2 eight rotations about a vertex by ±120◦ (e.g. (ABC)(DEF ))

Therefore, the generating function for the colorings with black and white faces is given
by the expression

1

24
((B+W )6+6(B+W )2(B4+W 4)+3(B+W )2(B2+W 2)2+6(B2+W 2)3+8(B3+W 3)2)

I asked Sage to expand this result for me and I find that it gives exactly the result in
equation (1).

sage: B,W = var(’B’,’W’)

sage: expand(1/24*((B+W)^6 + 6*(B+W)^2*(B^4+W^4) + 3*(B+W)^2*(B^2+W^2)^2 + \

6*(B^2+W^2)^3 + 8*(B^3+W^3)^2))

B^6 + B^5*W + 2*B^4*W^2 + 2*B^3*W^3 + 2*B^2*W^4 + B*W^5 + W^6

I can more or less count the number of colorings of the cube with two colors by hand,
but increasing the number of colors or the size of the object does not significantly increase
the complexity of using this formula but it does make counting these colorings by hand
significantly more complicated. Consider colorings of the cube with three colors (just as
an example).

sage: R,G,B = var(’R,G,B’)

sage: expand(1/24*((R+G+B)^6 + 6*(R+G+B)^2*(R^4+G^4+B^4) \

+ 3*(R+G+B)^2*(R^2+G^2+B^2)^2 + 6*(R^2+G^2+B^2)^3 + 8*(R^3+G^3+B^3)^2))

B^6 + B^5*G + B^5*R + 2*B^4*G^2 + 2*B^4*G*R + 2*B^4*R^2 + 2*B^3*G^3

+ 3*B^3*G^2*R + 3*B^3*G*R^2 + 2*B^3*R^3 + 2*B^2*G^4 + 3*B^2*G^3*R + 6*B^2*G^2*R^2

+ 3*B^2*G*R^3 + 2*B^2*R^4 + B*G^5 + 2*B*G^4*R + 3*B*G^3*R^2 + 3*B*G^2*R^3

+ 2*B*G*R^4 + B*R^5 + G^6 + G^5*R + 2*G^4*R^2 + 2*G^3*R^3 + 2*G^2*R^4 + G*R^5 + R^6


