
NOTES FROM THE SECOND CLASS

MIKE ZABROCKI - SEPTEMBER 11, 2014

In the first class we discussed three tools. Let me restate them again here (in a more
general form).

(1) the equality principle:
If there is a bijection between a finite set A and a finite set B, then they have

the same number of elements.
(2) the addition principle:

Say there are sets A1, A2, . . . , An with |Ai| = ai for 1 ≤ i ≤ n and all of the Ai

are disjoint then the number of elements in A1 ∪A2 ∪ · · · ∪An is

a1 + a2 + a3 + · · ·+ an

(3) multiplication principle
say there are sets A1, A2, . . . , An with |Ai| = ai for 1 ≤ i ≤ n and all of the Ai are

disjoint then the number of elements in A1×A2×· · ·×An = {(x1, x2, . . . , xn) where xi ∈
Ai} is a1a2 · · · an

Application:
S(n, k) = the number of set partitions of {1, 2, . . . , n} into k subsets
E.g.

{123}
{12, 3}, {13, 2}, {1, 23}

{1, 2, 3}

{1234}
{123, 4}, {124, 3}, {134, 2}, {234, 1}, {12, 34}, {13, 24}, {14, 23}
{12, 3, 4}, {13, 2, 4}, {14, 2, 3}, {23, 1, 4}, {24, 1, 3}, {34, 1, 2}

{1, 2, 3, 4}
1
1 1
1 3 1
1 7 6 1

but I can’t do more of this table by hand because it there are too many set partitions
of 5.

So let me argue the following using the three principles we start this class with.
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All set partitions of {1, 2, . . . , n} into k parts = the set partitions where n is by itself into
k − 1 other parts union the set partitions where n is with one of the other k parts of
{1, 2, , n− 1} so

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k) .

This allows us to compute the table of values of S(n, k) much further than we did before
without actually counting each individual one.

1
1 1
1 3 1
1 7 6 1
1 15 25 10 1
1 31 90 65 15 1

...
What we would like to do is start with

1 + 2 + 3 + · · ·+ n = n(n + 1)/2

and then to generalize this and get to

1r + 2r + · · ·+ nr =???

Just to show what we are up against:

(1) 1 + 2 + 3 + · · ·+ n = n(n + 1)/2

(2) 12 + 22 + 32 + · · ·+ n2 = n(n + 1)(2n + 1)/6

(3) 13 + 23 + · · ·+ n3 = n2(n + 1)2/4

(4) 14 + 24 + · · ·+ n4 =???

I don’t even know what the right hand side is for the last of these equations.
I showed a technique for demonstrating equalities like the one above, but this technique

only works if you know the right hand side. I showed the following general trick called
‘telescoping sums.’

In order to show that

a(1) + a(2) + · · ·+ a(n) = b(n)

for some formulas a(n) and b(n) and b(0) = 0, then all you need to do is show that
b(n)− b(n− 1) = a(n). If you do then

b(n)− b(n− 1) = a(n)

b(n− 1)− b(n− 2) = a(n− 1)
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...

b(2)− b(1) = a(2)

b(1)− b(0) = a(1)

Now add up all the terms on the left hand side and we have

(b(n)− b(n− 1)) + (b(n− 1)− b(n− 2)) + · · ·+ (b(1)− b(0)) = b(n)− b(0) = b(n)

If you add up all the terms on the right hand side of the equality then you have

a(n) + a(n− 1) + · · ·+ a(2) + a(1)

and they must be equal.

But there is a sequence of equations that continues (unlike equations (1)-(4)):

(5) 1 + 2 + 3 + · · ·+ n = n(n + 1)/2(??)

(6) 1 · 2 + 2 · 3 + · · ·+ n(n + 1) = (n + 1)n(n− 1)/3

(7) 1 · 2 · 3 + 2 · 3 · 4 + · · ·+ n(n + 1)(n + 2) = n(n + 1)(n + 2)/4

...

(8) 1 ·2 · · · k+2 ·3 · · · (k+1)+ · · ·+n · (n+1) · · · (n+k−1) = n · (n+1) · · · (n+k)/(k+1)

You should be able to prove this entire sequence of equations either by (a) induction (on
n) or (b) telescoping sums.

By telescoping sums, you need only do the computation,

1

k + 1
n(n + 1)(n + 2) · · · (n + k)− 1

k + 1
(n− 1)n(n + 1) · · · (n + k − 1) =

1

k + 1
((n + k)− (n− 1))n(n + 1) · · · (n + k − 2) = n(n + 1) · · · (n + k − 1)

Therefore, by the method of telescoping sums, (8) follows and all the equations (??)-(8)
are special cases of this one.

Define for k and integer with k > 0, set:

(x)(k) = x(x + 1)(x + 2) · · · (x + k − 1)

such that there are k terms in the product.
Examples: (x)(1) = x, (x)(2) = x(x + 1), (x)(3) = x(x + 1)(x + 2), . . .
This is new notation that makes some of our formulas simpler. Equations (??) - (8) are

now
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(9) (1)(1) + (2)(1) + · · ·+ (n)(1) =
(n)(2)

2

(10) (1)(1) + (2)(2) + · · ·+ (n)(2) =
(n)(3)

3

(11) (1)(3) + (2)(3) + · · ·+ (n)(3) =
(n)(4)

4
...

(12) (1)(k) + (2)(k) + · · ·+ (n)(k) =
(n)(k+1)

k + 1

Now it arises that the table of numbers S(n, k) appear in the expansion of xn in terms
of (x)k. In particular we have

(13) xn =

n∑
k=1

(−1)n−kS(n, k)(x)(k)

Example:
(x)(1) = x1

−(x)(1) + (x)(2) = −x + x(x + 1) = −x + x2 + x = x2

(x)(1) − 3(x)(2) + (x)(3) = x− 3(x2 + x) + (x3 + 3x2 + 2x) = x3

−(x)(1) + 7(x)(2) − 6(x)(3) + (x)(4) = −x + 7x(x + 1)− 6x(x + 1)(x + 2) + x(x + 1)(x + 2)(x + 3)

= −x + 7(x2 + x)− 6(x3 + 3x2 + 2x) + x4 + 6x3 + 11x2 + 6x

= x4

So it should seem surprising that it is even possible to give a formula for xn in terms
of (x)(k), and hopefully it is even more surprising that these coefficients are counted by
combinatorial objects called set partitions.


