
F. FRANKLIN’S PROOF OF EULER’S PENTAGONAL NUMBER
THEOREM

Abstract. The 18th century mathematician Leonard Euler discovered a simple formula
for the expansion of the infinite product

∏
i≥1 1 − qi. In 1881, one of the first American

mathematicians found an elegant combinatorial proof of this identity.

Proposition 1. (Euler’s pentagonal number theorem)

(1)
∏
i≥1

1− qi = 1 +
∑
m≥1

(−1)m
(
q

m(3m−1)
2 + q

m(3m+1)
2

)

There is a clever proof of this proposition that comes from a mathematician F. Franklin
[4]. Since this is exactly the sort of proof that is in the spirit of mathematics of algebraic
combinatorics it belongs in a course on algebraic combinatorics. Other accounts of this proof
can be found in: [5], [6], [7], [8], [9].

Example 1. We note that the left hand side of this equation is the generating function for
all strict partitions (partitions where all parts are distinct) weighted with (−1)`(λ)q|λ|. That
is,

(2)
∏
i≥1

1− qi =
∑

λ strict

(−1)`(λ)q|λ|

This follows by observing that to determine the coefficient of qn by expansion of the product
on the left we have a contribution of (−1)kqλ1+λ2+···+λk for every sequence (λ1, λ2, . . . , λk)
such that λi > λi+1 for 1 ≤ i < k. Below we expand the terms of this generating function
through degree 8. For example, a term of the form (−q4)(−q2) is represented by the picture

and we record the weight of +q6 just below the picture.

·
1 −q −q2 +q3 −q3 +q4 −q4 +q5 +q5 −q5 −q6 +q6

+q6 −q6 −q7 +q7 +q7 +q7 −q7 −q8
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· · ·
−q8 +q8 +q8 +q8 −q8 + · · ·

Now we notice that all of the terms cancel except for the ones stated in the theorem, that is
we have ∏

i≥1

1− qi = 1− q − q2 + q5 + q7 + · · ·

In fact, we will show that one way of looking at this expression is to observe terms which
survive are those that correspond to the following pictures:

·∏
i≥1 1− qi = 1 −q −q2 +q5 +q7 −q12 −q15

· · ·
+q22 +q26 −q35 −q40 · · ·

From the image in this example one might think that the theorem would be better named the
trapazoidal number theorem. There is a reason that the numbers m(3m− 1)/2 are referred
to as pentagonal numbers and if m → −m then the pentagonal number is transformed to
→ −m(−3m−1)/2 = m(3m+1)/2. Observe the picture below how a sequence of pentagons
have exactly m(3m− 1)/2 points in them (and this continues for m > 3).

Proof. To show that this proposition holds we show that there is an involution φ on the strict
partitions λ of n such that φ(λ) is also a partition of n and the length of φ(λ) will have length
either one smaller or one larger than that of λ. This means that if the weight of a strict
partition is (−1)`(λ)q|λ| then the weight of φ(λ) is−(−1)`(λ)q|λ| and so this term corresponding
to φ(λ) will cancel with the term corresponding to λ. This involution will fail to ‘work’ for

the partitions of the form (2m− 1, 2m− 2, . . . ,m) which are of size 2m2− (m+1)m
2

= m(3m−1)
2

and (2m, 2m− 1, . . . ,m + 1) which are of size 2m2 − (m−1)m
2

= m(3m+1)
2

.
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For a strict partition λ we will let r equal to the smallest part of λ (r = λ`(λ)) and let s equal
the number of parts which are consecutive at the beginning of the partition. In other words
s is the largest integer such that (λ1, λ2, . . . , λs) = (λ1, λ1 − 1, . . . , λ1 − s + 1).

If s 6= `(λ) and r > s then we will let φ(λ) equal the partition (λ1 − 1, λ2 − 1, . . . , λs −
1, λs+1, . . . , λ`(λ), s). That is, if the diagram for the partition looks something like the fol-
lowing where there is an × in each of the cells corresponding to r and a dot in the cells
corresponding to s

××××
· · ·

then φ(λ) will be the partition with the diagonal of s cells filled with a dot moved to the top
row of the partition.

· · ·××××

φ(λ) has the property that the longest string of consecutive parts at the beginning of the
partition is greater than or equal to s.

If s 6= `(λ) and r ≤ s then we will let φ(λ) equal to the partition (λ1 + 1, λ2 + 1, . . . , λr +
1, λr+1, . . . , λ`(λ)). For example, if our diagram is similar to the one below with the cells
marked with an × representing the row of size r and those marked with the · represent the
cells which correspond to the s consecutive parts at the beginning of the partition.

×××
· · · ·

The partition corresponding to φ(λ) is then represented by the following picture.

· ·×·×·×

Notice that it is also possible that s = `(λ). In this case if r > s+1 then we will remove the
s cells along the diagonal and turn them into the shortest row so that φ(λ) = (λ1 − 1, λ2 −
1, . . . , λs − 1, s). For example we have the picture on the left will be transformed to the one
on the right.

×××××•· ·
· · ·×××××

λ φ(λ)

If s = `(λ) and r < s then we will set φ(λ) = (λ1 + 1, λ2 + 1, . . . , λr + 1, λr, . . .`(λ)−1), this
corresponds to the case when we have a partition of the form of the one below.
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××•· · · · ·
· · ·×·×·×

λ φ(λ)

If we describe what is happening to the diagram the map φ does one of two things, either it
removes the smallest row of r = λ`(λ) cells of the partition and places one cell more in each
of the first r rows (in the case that r < s or r = s and s < `(λ)) or it removes one cell from
each of the first s rows and adds a row of size s to the top of the diagram (in the case that
r > s + 1 or r = s + 1 and s < `(λ)).

Observe that if the weight of λ is (−1)`(λ) then since φ(λ) has the same number of cells and
either one more or one less row than λ then the weight of φ(λ) is the negative of the weight
of λ.

Also observe for each of the 4 cases we have considered, φ(φ(λ)) is just λ. This implies we
can say that in the expansion of the expression

∑
λ strict(−1)`(λ)q|λ|, the term corresponding

to the partition λ will cancel with the term corresponding to the partition φ(λ).

There are two cases that we have not considered. These terms do not cancel. One is that
r = s and s = `(λ) and so we have a partition of the form (2m−1, 2m−2, . . . ,m) and the other
is that r = s+1 and s = `(λ) and this is a partition of the form (2m, 2m−1, . . . ,m+1). �

We encourage the reader to take a pencil and draw an arrow between the diagrams of the
strict partitions given in the example above to show that the involution works as expected.
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