F. FRANKLIN’S PROOF OF EULER’S PENTAGONAL NUMBER
THEOREM

ABSTRACT. The 18" century mathematician Leonard Euler discovered a simple formula
for the expansion of the infinite product [],»; 1 — ¢’. In 1881, one of the first American
mathematicians found an elegant combinatorial proof of this identity.

Proposition 1. (Euler’s pentagonal number theorem)
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There is a clever proof of this proposition that comes from a mathematician F. Franklin
[4]. Since this is exactly the sort of proof that is in the spirit of mathematics of algebraic
combinatorics it belongs in a course on algebraic combinatorics. Other accounts of this proof
can be found in: [5], [6], [7], [8], [9].

Example 1. We note that the left hand side of this equation is the generating function for
all strict partitions (partitions where all parts are distinct) weighted with (—1)*¢l*. That
is,
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This follows by observing that to determine the coefficient of ¢ by expansion of the product
on the left we have a contribution of (—1)¥gM+ 2t +x for every sequence (A1, A, ..., \x)
such that A\; > A4y for 1 < i < k. Below we expand the terms of this generating function
through degree 8. For example, a term of the form (—¢*)(—¢?) is represented by the picture

Ho and we record the weight of +¢° just below the picture.
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Now we notice that all of the terms cancel except for the ones stated in the theorem, that is
we have
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In fact, we will show that one way of looking at this expression is to observe terms which
survive are those that correspond to the following pictures:
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From the image in this example one might think that the theorem would be better named the
trapazoidal number theorem. There is a reason that the numbers m(3m — 1)/2 are referred
to as pentagonal numbers and if m — —m then the pentagonal number is transformed to
— —m(—3m—1)/2 = m(3m+1)/2. Observe the picture below how a sequence of pentagons
have exactly m(3m — 1)/2 points in them (and this continues for m > 3).

Proof. To show that this proposition holds we show that there is an involution ¢ on the strict
partitions A of n such that ¢(\) is also a partition of n and the length of ¢(\) will have length
either one smaller or one larger than that of \. This means that if the weight of a strict
partition is (—1)“™¢l* then the weight of ¢()) is —(—1)*V¢l* and so this term corresponding
to ¢(A) will cancel with the term corresponding to A. This involution will fail to ‘work’ for

the partitions of the form (2m —1,2m —2,...,m) which are of size 2m? — (mzl)m = m(?’g”_l)

_ (m=1)m _ m(3m+1)
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and (2m,2m — 1,...,m + 1) which are of size 2m?
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For a strict partition A we will let r equal to the smallest part of A (r = Ay(»)) and let s equal
the number of parts which are consecutive at the beginning of the partition. In other words
s is the largest integer such that (A, Ao, ..., As) = (A, A1 —1,..., A1 — s+ 1).

If s # ¢(\) and r > s then we will let ¢(\) equal the partition (A; — 1, o — 1,..., Ay —
L, As15-- -5 An), 8). That is, if the diagram for the partition looks something like the fol-
lowing where there is an x in each of the cells corresponding to r» and a dot in the cells
corresponding to s

then ¢(\) will be the partition with the diagonal of s cells filled with a dot moved to the top
row of the partition.

¢(A) has the property that the longest string of consecutive parts at the beginning of the
partition is greater than or equal to s.

If s # ¢(\) and r < s then we will let ¢(\) equal to the partition (A\; + 1, +1,..., A\ +
L Ag1,--, Agny). For example, if our diagram is similar to the one below with the cells
marked with an x representing the row of size r and those marked with the - represent the
cells which correspond to the s consecutive parts at the beginning of the partition.

The partition corresponding to ¢(\) is then represented by the following picture.
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Notice that it is also possible that s = ¢(\). In this case if r > s+ 1 then we will remove the
s cells along the diagonal and turn them into the shortest row so that ¢p(A) = (A — 1, Ay —
1,...,As — 1, ). For example we have the picture on the left will be transformed to the one
on the right.

If s = £4()\) and 7 < s then we will set ¢(A) = (A + LA+ 1,..., A + 1, A, .. g0)-1), this
corresponds to the case when we have a partition of the form of the one below.
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If we describe what is happening to the diagram the map ¢ does one of two things, either it
removes the smallest row of 7 = Ay cells of the partition and places one cell more in each
of the first » rows (in the case that 7 < s or 7 = s and s < £(\)) or it removes one cell from
each of the first s rows and adds a row of size s to the top of the diagram (in the case that
r>s+lorr=s+1ands</{(\)).

Observe that if the weight of A is (—1)“™ then since ¢(\) has the same number of cells and

either one more or one less row than A then the weight of ¢(\) is the negative of the weight
of \.

Also observe for each of the 4 cases we have considered, ¢(¢(A)) is just A. This implies we
can say that in the expansion of the expression ), smCt(—l)e()‘)qW, the term corresponding
to the partition A will cancel with the term corresponding to the partition ¢(\).

There are two cases that we have not considered. These terms do not cancel. One is that
r = sand s = £(\) and so we have a partition of the form (2m—1,2m—2,...,m) and the other
is that r = s+ 1 and s = /() and this is a partition of the form (2m,2m—1,...,m+1). O

We encourage the reader to take a pencil and draw an arrow between the diagrams of the
strict partitions given in the example above to show that the involution works as expected.
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