
HOMEWORK #5 SOLUTIONS - MATH 4160

DUE: FRIDAY APRIL 4, 2003 AT 10:30AM

Write your homework solutions neatly and clearly. Provide full explanations and justify all of your
answers. You may work in groups (maximum 3). You need only hand in one assignment per group,
and write all names at the top.

Enumeration problems.

(1) Below are pictures of the 5 regular solids. Determine the orders of each of the symmetry
groups by describing a procedure which picks an ‘up face’ and then one that picks the
rotation of the solid that leaves the ‘up face’ fixed.

Note: the icosahedron has 20 faces, 30 edges and 12 vertices and the dodecahedron has 12
faces, 30 edges and 20 vertices.

Solution: The symmetry group of the solid above will be the set of rotations of the solid
such that the orientation of the object looks the same before and after the rotation. That
is, we look at each solid individually and start with one face up and one face towards us and
then rotate the solid until we again have this configuration. How many different rotations
are possible?

The tetrahedron has 4 faces. When we pick which one of the 4 is facing up, there are
3 choices for the face which is toward us. This means that there are 12 symmetries of the
tetrahedron.

The cube has 6 faces. When we choose which one of the 6 is facing up, there are 4
possibilities for the one that is facing toward us. There are 24 = 6 · 4 symmetries of the
cube.

The octahedron has 8 faces for the up face and 3 choices for the face which is toward us
so again the symmetry group has 24 = 8 · 3 symmetries.

The icosahedron has 20 faces and each of these faces is adjacent to 3 others. Once we
determine which of the 20 faces is our ‘up‘ face, there are 3 choices for the face that is
toward us and thus there are 60 symmetries of this object.
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2 DUE: FRIDAY APRIL 4, 2003 AT 10:30AM

The dodecahedron has 12 faces and each of these faces is adjacent to 5 other faces. The
symmetry group will have order 60 = 12 · 5 since once we choose the ‘up‘ face, there are
then 5 choices for the face which is toward us.

(2) We say that a permutation π has a descent at postition k if π(k) > π(k + 1). How many
permutations of n have only one descent and the descent is at position k where 1 ≤ k ≤ n?
How many permutations of n have at most one descent?

Solution: A permutation with a descent at position k means that the permutation π =
π1π2 · · ·πn has the property that π1 < π2 < · · · < πk and πk > πk+1 and πk+1 < πk+2 <
· · · < πn. I can choose a subset of k numbers from a set of size n and let them be the
numbers π1 through πk in increasing order and the remaining n − k integers will be πk+1

through πn in increasing order. There will be a descent at position k if and only if the
subset of size k is not {1, 2, . . . , k} because in that case πk = k and πk+1 = k +1. Therefore
there are

(
n
k

)
− 1 permutations with exactly one descent at position k.

The number of permutations with at most one descent will be the permutations with
no descents (i.e. only the permutation 123 · · ·n) plus the number of permutations with a
descent at position 1, or at position 2, or at position 3 etc. Therefore there are

1 +
(

n

1

)
− 1 +

(
n

2

)
− 1 + · · ·+

(
n

n− 1

)
− 1 =

n∑
k=0

(
n

k

)
− n = 2n − n

The permutations with at most one descent are known as the Grassmannian permuta-
tions.

(3) (Bonus: grad students should do this) Let Cn represent the cyclic group of order n. For
any number d, every abelian group of order d is isomorphic to Cr1 × Cr2 × · · · × Crk

for
some sequence of ri where r1r2 · · · rk = d. By problem 1 in the next group of questions we
know that Cr1×Cr2

∼= Cr2×Cr1 so when considering an equivalence class of abelian groups,
without loss of generality we can assume that r1 ≥ r2 ≥ · · · ≥ rk. With this assumption
one can show that if each ri is a power of p for some prime p then Cr1 ×Cr2 × · · · ×Crk

∼=
Cs1 × Cs2 × · · ·Cs`

if and only if (r1, r2, . . . , rk) = (s1, s2, . . . , s`). How many equivalence
classes of groups are there of order pn where p is prime? (Suggestion: write out all possible
abelian groups of order 32, 33, 34, 35 and try to make a connection with a combinatorial
object we have seen before).

Solution: I suggested that you write out the possible groups for p = 3 and n = 2, 3, 4, 5.
The answer is the same no matter what value of p you choose.

Cp × Cp Cp2

Cp × Cp × Cp Cp2 × Cp Cp3

Cp × Cp × Cp × Cp Cp2 × Cp × Cp Cp2 × Cp2 Cp3 × Cp Cp4

Cp × Cp × Cp × Cp × Cp Cp2 × Cp × Cp × Cp Cp2 × Cp2 × Cp

Cp3 × Cp × Cp Cp3 × Cp2 Cp4 × Cp Cp5

Notice that the number of classes of abelian groups of order pn is equal to the number
of partitions of n. That is, for every partition λ = (λ1, λ2, . . . , λ`(λ)) of n there is a group
of order pn of the form Cpλ1 × Cpλ2 × · · · × C

p
λ`(λ) and every abelian group of order pn is

isomorphic to a group of this form.
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Groups and permuations:

(1) Prove that for any groups G and H that G×H is isomorphic to H ×G.

Solution: I didn’t want you to bother with this question since we didn’t end up discussing
the definition of ‘isomorphic’ in class nor the product of groups. I assume that the grad
students who were responsible for problem number (3) above are able to prove this if
necessary.

(2) Write down the multiplication table for the group A4 of the 12 permutations of S4 with even
length (recall length(π) = #{(i, j) : i < j and π(i) > π(j)}). State how the multiplication
table shows this is closed and every element has an inverse.
(a) What is the maximum order of an element in the group?
(b) How many elements are there of each order?
(c) What is the largest proper subgroup of this group?
(d) Show that the group is not abelian by producing two elements x and y such that

xy 6= yx.
(e) Is there a proper subgroup of this group which is not abelian?

Solution: See the group table on the last page to answer these questions. Every row of this
table consists only of elements whose cycle type is (1, 1, 1, 1), (3, 1) or (2, 2).
(a) Every element in this group is order either 1, 2 or 3. Therefore the maximum order of

an element is 3.
(b) There are 3 elements of order 2, 8 elements of order 3 and 1 element of order 1.
(c) The largest proper subgroup of this group is {(1), (12)(34), (13)(24), (14)(23)}. This

can be determined from looking at the table. Since the order of a subgroup must divide
the order of the group the order of a proper subgroup of A4 must be 1, 2, 3, 4 or 6. If
our subgroup was of order 6 then it must include the identity and at least two elements
of order 3, say (abc) and (acb). We note that if it includes any of the elements of order
two then by closure it will also include two more elements of order 3 since the product
of an element of order 2 and one of order 3 is an element of order 3 and the inverse. If
it includes four elements of order 3 then it includes at least 2 elements of order 2. Now
this proves that the subgroup contains more than 6 elements so it must be the entire
group (and hence is not ‘proper’).

(d) The group is not abelian (123) ◦ (124) = (13)(24) and (124) ◦ (123) = (14)(23).
(e) No. All proper subgroups are abelian. This is easy to check on the multiplication table

since all the proper subgroups are of order 2, 3 or 4.
(3) (a) What is the size of the conjugacy class of elements with cycle type (9, 9, 7, 7, 7, 7, 6, 6, 6, 3)

inside of S67?
(b) What is the order of each of the elements in this conjugacy class?
(c) What is the largest conjugacy class in S47?
(d) What is the smallest conjugacy class in S47?
(e) What is the maximum order of an element in S47?

Solution:
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(a) The number of elements of cycle type (9, 9, 7, 7, 7, 7, 6, 6, 6, 3) is given by the formula

67!
92 · 2! · 74 · 4! · 63 · 3! · 3

≈ 1.004857133× 1084

(b) The order of an element with this cycle type is lcm(9, 7, 6, 3) = 126.
(c) The largest conjugacy class will be one that minimizes the denominator of the formula

for the size of the conjugacy class. That is we want
∏

k>0 kmk(λ)mk(λ)! as small as
possible for all partitions λ of size 47. This happens for λ = (46, 1) and the conjugacy
class will have 47 · 45! elements in it.

(d) The smallest conjugacy class of S47 consists of just the identity.
(e) The order of an element with cycle type λ = (λ1, λ2, . . . , λ`(λ)) is lcm(λ1, λ2, . . . , λ`(λ)).

To maximize this we should choose each of the λi to be relatively prime to each other.
A starting point for a search of a partition which maximizes this quantity is to consider
47 = 2 + 3 + 5 + 7 + 11 + 13 + 6 (that is the sum of the first 6 prime numbers and
we are left with 6 left over). The elements of cycle type (13, 11, 8, 7, 5, 3) have order
120120 and this is the maximum possible order of an element of S47.

Burnside’s theorem and Pólya enumeration:

(1) How many different patterns can be formed by assembling 27 black and white cubes to form
a 3× 3× 3 cube? (consider only rotational symmetries of the cube).

Solution: I have included on the web page a few paragraphs on how to group together all of
the rotations of the cube. See the note at http://garsia.math.yorku.ca/~zabrocki/math
4160w03/cubesyms/.

Every coloring of the cubes is fixed by the identity element and there are 226 such colorings
(note: we need not color the center cube since it is hidden by the others).

There are 6 rotations of ±90◦ leaving two faces in place. The number of colorings of the
cube which are fixed by these permutations is 28.

There are 3 rotations of 180◦ leaving two faces in place. The number of colorings of the
26 cubes which are fixed by these permutations is 214.

There are 6 rotations by 180◦ of cube leaving 2 edges in the same place. There are again
214 colorings of the cubes which are fixed by these permutations.

There remain 8 rotations of the cube leaving two corners fixed and 210 ways of coloring
the cubes such that they are fixed by these permutations.

This means that the total number of patterns (using Burnside’s theorem) is

1
24
(
226 + 6 · 28 + 9 · 214 + 8 · 210

)
= 2802752

(2) How many different patterns can be formed by assembling 27 different cubes such that 1 is
black, 8 are red, 9 are white and 9 are blue into a 3× 3× 3 cube.

Solution: The cycle index polynomial for this group action is given by

1
24
(
x27

1 + 9x3
1x

12
2 + 8x3

1x
8
3 + 6x3

1x
6
4

)
.
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This is found by looking at the 3×3×3 cube and observing the orbits of each of the blocks.
For any of the permutations except the identity there are exactly 3 fixed points and the
other 24 cubes are permuted amongst themselves in orbits of size 2, 3 or 4.

Now, to compute the coefficient of B1r8w9b9 in the polynomial above with xk replaced
by Bk + rk + wk + bk. This means we want the coefficient of B1r8w9b9 in

1
24

((B+r + w + b)27 + 9(B + r + w + b)3(B2 + r2 + w2 + b2)12+

8(B + r + w + b)3(B3 + r3 + w3 + b3)8 + 6(B + r + w + b)3(B4 + r4 + w4 + b4)6).

This is equal to

1
24

(
27!

8! 9! 9!
+ 9 · 6 · 12!

4! 4! 4!
+ 8 · 3 · 8!

2! 3! 3!
+ 6 · 6 · 6!

2! 2! 2!

)
= 85452615470.

(3) How many different patterns can be formed by coloring the following pattern with c different
colors? Consider rotational and reflections of the figure.

Solution: There are 8 elements in the symmetry group for this pattern (just as for the
square), 4 flips and 3 rotations and the identity. Every square is in an orbit of 4 under
rotations by ±90◦ and each of those 96/4 = 24 orbits may be colored independently. A
rotation by 180◦, or a flip about the horizontal or vertical of the diagram groups the squares
into pairs so that there are 96/2 = 48 ways of coloring the diagram so that it is fixed by
these elements. When the diagram is flipped about either of the diagaonals, 4 squares stay
fixed and the other 92 squares are paired up so that there are 4+92/2 = 50 ways of coloring
the diagram. This means that there are

1
8
(
c96 + 2c24 + 3c48 + 2c50

)
ways of coloring this diagram with c colors.

(4) How many different ways are there of coloring the pattern above with 48 squares colored
black and 48 of the squares colored white?

Solution: The cycle index polynomial of this group action is

1
8
(
x96

1 + 2x24
4 + 3x48

2 + 2x4
1x

46
2

)
.
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Look at the figure and each of the group elements...if you don’t know how to do this part,
come talk to me.

Now, replace xk with bk + wk and take the coefficient of b48w48 in this polynomial. The
polynomial is

1
8
(
(b + w)96 + 2(b4 + w4)24 + 3(b2 + w2)48 + 2(b + w)4(b2 + w2)46

)
The coefficient of b48w48 is

1
8

(
96!

48! 48!
+ 2

24!
12! 12!

+ 3
48!

24! 24!
+ 2

(
46!

22! 24!
+ 6

46!
23! 23!

+
46!

22! 24!

))
= 804383376733315751736405964



GROUP TABLE FOR A4

GROUPS AND PERMUTATIONS PROBLEM (2)

(1) (12)(34) (13)(24) (14)(23) (123) (132) (124) (142) (134) (143) (234) (243)
(1) (1) (12)(34) (13)(24) (14)(23) (123) (132) (124) (142) (134) (143) (234) (243)

(12)(34) (12)(34) (1) (14)(23) (13)(24) (243) (143) (234) (134) (142) (132) (124) (123)
(13)(24) (13)(24) (14)(23) (1) (12)(34) (142) (234) (143) (123) (243) (124) (132) (134)
(14)(23) (14)(23) (13)(24) (12)(34) (1) (134) (124) (132) (243) (123) (234) (143) (142)
(123) (123) (134) (243) (142) (132) (1) (13)(24) (143) (234) (14)(23) (12)(34) (124)
(132) (132) (234) (124) (143) (1) (123) (243) (14)(23) (12)(34) (142) (134) (13)(24)
(124) (124) (143) (132) (234) (14)(23) (134) (142) (1) (13)(24) (243) (123) (12)(34)
(142) (142) (243) (134) (123) (234) (13)(24) (1) (124) (132) (12)(34) (14)(23) (143)
(134) (134) (123) (142) (243) (124) (14)(23) (12)(34) (234) (143) (1) (13)(24) (132)
(143) (143) (124) (234) (132) (12)(34) (243) (123) (13)(24) (1) (134) (142) (14)(23)
(234) (234) (132) (143) (124) (13)(24) (142) (134) (12)(34) (14)(23) (123) (243) (1)
(243) (243) (142) (123) (134) (143) (12)(34) (14)(23) (132) (124) (13)(24) (1) (234)
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