The index of coincidence is defined as

$$
I_{c}=\frac{\text { number of pairs of equal letters in ciphertext }}{\text { the total number of pairs of letters }}
$$

That is if we set

The index of coincidence is defined as

$$
I_{c}=\frac{\text { number of pairs of equal letters in ciphertext }}{\text { the total number of pairs of letters }}
$$

That is if we set

- $N_{\alpha}=$ the number of occurrences of the letter α in the cyphertext

The index of coincidence is defined as

$$
I_{C}=\frac{\text { number of pairs of equal letters in ciphertext }}{\text { the total number of pairs of letters }}
$$

That is if we set

- $N_{\alpha}=$ the number of occurrences of the letter α in the cyphertext
-

$$
D_{c}=\sum_{\alpha=A}^{Z}\binom{N_{\alpha}}{2}
$$

D_{c} represents the number of pairs of equal letters in the cyphertext.

The index of coincidence is defined as

$$
I_{c}=\frac{\text { number of pairs of equal letters in ciphertext }}{\text { the total number of pairs of letters }}
$$

That is if we set

- $N_{\alpha}=$ the number of occurrences of the letter α in the cyphertext
-

$$
D_{c}=\sum_{\alpha=A}^{Z}\binom{N_{\alpha}}{2}
$$

D_{c} represents the number of pairs of equal letters in the cyphertext.

- then $I_{c}=\frac{D_{c}}{\binom{v}{2}}$

The index of coincidence is defined as

$$
I_{c}=\frac{\text { number of pairs of equal letters in ciphertext }}{\text { the total number of pairs of letters }}
$$

That is if we set

- $N_{\alpha}=$ the number of occurrences of the letter α in the cyphertext
-

$$
D_{c}=\sum_{\alpha=A}^{Z}\binom{N_{\alpha}}{2}
$$

D_{c} represents the number of pairs of equal letters in the cyphertext.

- then $I_{c}=\frac{D_{c}}{\binom{c}{2}}$
- where $N=$ the number of letters in the cyphertext

The index of coincidence is invariant under monoalphabetic cyphers and we estimate under this condition that $N_{\alpha}=N * p_{\sigma(\alpha)}$ for some permutation of the alphabet σ and so

$$
I_{c}=\frac{\sum_{\alpha=A}^{Z}\left(N_{\alpha}^{2}-N_{\alpha}\right)}{N(N-1)}
$$

The index of coincidence is invariant under monoalphabetic cyphers and we estimate under this condition that $N_{\alpha}=N * p_{\sigma(\alpha)}$ for some permutation of the alphabet σ and so

$$
\begin{aligned}
I_{c} & =\frac{\sum_{\alpha=A}^{Z}\left(N_{\alpha}^{2}-N_{\alpha}\right)}{N(N-1)} \\
& \approx \frac{N^{2}\left(\sum_{\alpha=A}^{Z} p_{\alpha}^{2}\right)-N}{N(N-1)}
\end{aligned}
$$

The index of coincidence is invariant under monoalphabetic cyphers and we estimate under this condition that $N_{\alpha}=N * p_{\sigma(\alpha)}$ for some permutation of the alphabet σ and so

$$
\begin{aligned}
I_{c} & =\frac{\sum_{\alpha=A}^{Z}\left(N_{\alpha}^{2}-N_{\alpha}\right)}{N(N-1)} \\
& \approx \frac{N^{2}\left(\sum_{\alpha=A}^{Z} p_{\alpha}^{2}\right)-N}{N(N-1)} \\
& =\frac{N(.065)-1}{N-1}
\end{aligned}
$$

$\approx .065$

If the cyphertext was obtained from a polyalphabetic cipher then the index of coincidence can also be used to estimate the period of the cipher.
Let p be the period of the cyphertext and place the letters of the cyphertext into groups of p so that the letters in the $i^{\text {th }}$ position of the groups are all encrypted with the same key.

If the cyphertext was obtained from a polyalphabetic cipher then the index of coincidence can also be used to estimate the period of the cipher.
Let p be the period of the cyphertext and place the letters of the cyphertext into groups of p so that the letters in the $i^{\text {th }}$ position of the groups are all encrypted with the same key.

- Let $M_{\alpha}^{(i)}$ equal the number of occurrences of the letter α that appears in the $i^{t h}$ positions in the groups.

If the cyphertext was obtained from a polyalphabetic cipher then the index of coincidence can also be used to estimate the period of the cipher.
Let p be the period of the cyphertext and place the letters of the cyphertext into groups of p so that the letters in the $i^{\text {th }}$ position of the groups are all encrypted with the same key.

- Let $M_{\alpha}^{(i)}$ equal the number of occurrences of the letter α that appears in the $i^{t h}$ positions in the groups.
- If there are M groups of p, then $\sum_{\alpha=A}^{Z} M_{\alpha}^{(i)}=M$

If the cyphertext was obtained from a polyalphabetic cipher then the index of coincidence can also be used to estimate the period of the cipher.
Let p be the period of the cyphertext and place the letters of the cyphertext into groups of p so that the letters in the $i^{\text {th }}$ position of the groups are all encrypted with the same key.

- Let $M_{\alpha}^{(i)}$ equal the number of occurrences of the letter α that appears in the $i^{t h}$ positions in the groups.
- If there are M groups of p, then $\sum_{\alpha=A}^{Z} M_{\alpha}^{(i)}=M$
- We also have $N=M p$

If the cyphertext was obtained from a polyalphabetic cipher then the index of coincidence can also be used to estimate the period of the cipher.
Let p be the period of the cyphertext and place the letters of the cyphertext into groups of p so that the letters in the $i^{\text {th }}$ position of the groups are all encrypted with the same key.

- Let $M_{\alpha}^{(i)}$ equal the number of occurrences of the letter α that appears in the $i^{t h}$ positions in the groups.
- If there are M groups of p, then $\sum_{\alpha=A}^{Z} M_{\alpha}^{(i)}=M$
- We also have $N=M p$
- Also we can estimate that $M_{\alpha}^{(i)} \approx M p_{\sigma(\alpha)}$ (again for some permutation for the alphabet σ)

Now, we calculate that

$$
2 D_{c}=\sum_{i=1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)}\left(M_{\alpha}^{(i)}-1\right)+2 \sum_{i=1}^{p} \sum_{j=i+1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)} M_{\alpha}^{(j)}
$$

Now, we calculate that

$$
\begin{aligned}
2 D_{c} & =\sum_{i=1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)}\left(M_{\alpha}^{(i)}-1\right)+2 \sum_{i=1}^{p} \sum_{j=i+1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)} M_{\alpha}^{(j)} \\
& =\sum_{i=1}^{p} \sum_{\alpha=A}^{Z}\left(M_{\alpha}^{(i)}\right)^{2}-\sum_{i=1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)}+2 \sum_{i=1}^{p} \sum_{j=i+1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)} M_{\alpha}^{(j)}
\end{aligned}
$$

Now, we calculate that

$$
\begin{aligned}
2 D_{c} & =\sum_{i=1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)}\left(M_{\alpha}^{(i)}-1\right)+2 \sum_{i=1}^{p} \sum_{j=i+1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)} M_{\alpha}^{(j)} \\
& \approx M^{2} \sum_{i=1}^{p} \sum_{\alpha=A}^{Z} p_{\alpha}^{2}-\sum_{i=1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)}+2 \sum_{i=1}^{p} \sum_{j=i+1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)} M_{\alpha}^{(j)}
\end{aligned}
$$

Now, we calculate that

$$
\begin{aligned}
2 D_{c} & =\sum_{i=1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)}\left(M_{\alpha}^{(i)}-1\right)+2 \sum_{i=1}^{p} \sum_{j=i+1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)} M_{\alpha}^{(j)} \\
& \approx M^{2} \sum_{i=1}^{p}(.065)-\sum_{i=1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)}+2 \sum_{i=1}^{p} \sum_{j=i+1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)} M_{\alpha}^{(j)}
\end{aligned}
$$

Now, we calculate that

$$
\begin{aligned}
2 D_{c} & =\sum_{i=1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)}\left(M_{\alpha}^{(i)}-1\right)+2 \sum_{i=1}^{p} \sum_{j=i+1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)} M_{\alpha}^{(j)} \\
& \approx M^{2} p(.065)-\sum_{i=1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)}+2 \sum_{i=1}^{p} \sum_{j=i+1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)} M_{\alpha}^{(j)}
\end{aligned}
$$

Now, we calculate that

$$
\begin{aligned}
2 D_{c} & =\sum_{i=1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)}\left(M_{\alpha}^{(i)}-1\right)+2 \sum_{i=1}^{p} \sum_{j=i+1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)} M_{\alpha}^{(j)} \\
& \approx M^{2} p(.065)-\sum_{i=1}^{p} M+2 \sum_{i=1}^{p} \sum_{j=i+1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)} M_{\alpha}^{(j)}
\end{aligned}
$$

Now, we calculate that

$$
\begin{aligned}
2 D_{c} & =\sum_{i=1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)}\left(M_{\alpha}^{(i)}-1\right)+2 \sum_{i=1}^{p} \sum_{j=i+1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)} M_{\alpha}^{(j)} \\
& \approx M^{2} p(.065)-p M+2 \sum_{i=1}^{p} \sum_{j=i+1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)} M_{\alpha}^{(j)}
\end{aligned}
$$

Now, we calculate that

$$
\begin{aligned}
2 D_{c} & =\sum_{i=1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)}\left(M_{\alpha}^{(i)}-1\right)+2 \sum_{i=1}^{p} \sum_{j=i+1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)} M_{\alpha}^{(j)} \\
& \approx M^{2} p(.065)-p M+2 M^{2} \sum_{i=1}^{p} \sum_{j=i+1}^{p} \sum_{\alpha=A}^{Z} p_{\alpha}^{(i)} p_{\alpha}^{(j)}
\end{aligned}
$$

Now, we calculate that

$$
\begin{aligned}
2 D_{c} & =\sum_{i=1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)}\left(M_{\alpha}^{(i)}-1\right)+2 \sum_{i=1}^{p} \sum_{j=i+1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)} M_{\alpha}^{(j)} \\
& \approx M^{2} p(.065)-p M+2 M^{2} \sum_{i=1}^{p} \sum_{j=i+1}^{p} 1 / 26
\end{aligned}
$$

Now, we calculate that

$$
\begin{aligned}
2 D_{c} & =\sum_{i=1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)}\left(M_{\alpha}^{(i)}-1\right)+2 \sum_{i=1}^{p} \sum_{j=i+1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)} M_{\alpha}^{(j)} \\
& \approx M^{2} p(.065)-p M+2 M^{2} \sum_{i=1}^{p} \sum_{j=i+1}^{p}(.038)
\end{aligned}
$$

Now, we calculate that

$$
\begin{aligned}
2 D_{c} & =\sum_{i=1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)}\left(M_{\alpha}^{(i)}-1\right)+2 \sum_{i=1}^{p} \sum_{j=i+1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)} M_{\alpha}^{(j)} \\
& \approx M^{2} p(.065)-p M+M^{2}(.038) p(p-1)
\end{aligned}
$$

Now, we calculate that

$$
\begin{aligned}
2 D_{c} & =\sum_{i=1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)}\left(M_{\alpha}^{(i)}-1\right)+2 \sum_{i=1}^{p} \sum_{j=i+1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)} M_{\alpha}^{(j)} \\
& \approx M^{2} p(.065)-p M+M^{2}(.038) p(p-1) \\
& =M^{2} p(.065)-p M+M^{2}(.038) p(p-1)
\end{aligned}
$$

Now, we calculate that

$$
\begin{aligned}
2 D_{c} & =\sum_{i=1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)}\left(M_{\alpha}^{(i)}-1\right)+2 \sum_{i=1}^{p} \sum_{j=i+1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)} M_{\alpha}^{(j)} \\
& \approx M^{2} p(.065)-p M+M^{2}(.038) p(p-1) \\
& =\frac{N^{2}}{p}(.065)-p M+M^{2}(.038) p(p-1)
\end{aligned}
$$

Now, we calculate that

$$
\begin{aligned}
2 D_{c} & =\sum_{i=1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)}\left(M_{\alpha}^{(i)}-1\right)+2 \sum_{i=1}^{p} \sum_{j=i+1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)} M_{\alpha}^{(j)} \\
& \approx M^{2} p(.065)-p M+M^{2}(.038) p(p-1) \\
& =\frac{N^{2}}{p}(.065)-N+M^{2}(.038) p(p-1)
\end{aligned}
$$

Now, we calculate that

$$
\begin{aligned}
2 D_{c} & =\sum_{i=1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)}\left(M_{\alpha}^{(i)}-1\right)+2 \sum_{i=1}^{p} \sum_{j=i+1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)} M_{\alpha}^{(j)} \\
& \approx M^{2} p(.065)-p M+M^{2}(.038) p(p-1) \\
& =\frac{N^{2}}{p}(.065)-N+N^{2}(.038)-M^{2} p(.038)
\end{aligned}
$$

Now, we calculate that

$$
\begin{aligned}
2 D_{c} & =\sum_{i=1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)}\left(M_{\alpha}^{(i)}-1\right)+2 \sum_{i=1}^{p} \sum_{j=i+1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)} M_{\alpha}^{(j)} \\
& \approx M^{2} p(.065)-p M+M^{2}(.038) p(p-1) \\
& =\frac{N^{2}}{p}(.065)-N+N^{2}(.038)-\frac{N^{2}}{p}(.038)
\end{aligned}
$$

Now, we calculate that

$$
\begin{aligned}
2 D_{c} & =\sum_{i=1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)}\left(M_{\alpha}^{(i)}-1\right)+2 \sum_{i=1}^{p} \sum_{j=i+1}^{p} \sum_{\alpha=A}^{Z} M_{\alpha}^{(i)} M_{\alpha}^{(j)} \\
& \approx M^{2} p(.065)-p M+M^{2}(.038) p(p-1) \\
& =\frac{N^{2}}{p}(.027)-N+N^{2}(.038)
\end{aligned}
$$

Note that because $I_{c}=\frac{D_{c}}{\binom{N}{2}}$, we have that

$$
2 D_{c}=N(N-1) I_{c} .
$$

Note that because $I_{c}=\frac{D_{c}}{\binom{N}{2}}$, we have that

$$
2 D_{c}=N(N-1) I_{c} .
$$

And we just derived that

$$
2 D_{c} \approx \frac{N^{2}}{p}(.027)-N+N^{2}(.038)
$$

Note that because $I_{c}=\frac{D_{c}}{\binom{N}{2}}$, we have that

$$
2 D_{c}=N(N-1) I_{c} .
$$

And we just derived that

$$
2 D_{c} \approx \frac{N^{2}}{p}(.027)-N+N^{2}(.038)
$$

Therefore,

$$
N(N-1) I_{c} \approx \frac{N^{2}}{p}(.027)-N+N^{2}(.038)
$$

Note that because $I_{c}=\frac{D_{c}}{\binom{N}{2}}$, we have that

$$
2 D_{c}=N(N-1) I_{c} .
$$

And we just derived that

$$
2 D_{c} \approx \frac{N^{2}}{p}(.027)-N+N^{2}(.038)
$$

Therefore,

$$
(N-1) I_{c} \approx \frac{N}{p}(.027)-1+N(.038)
$$

Note that because $I_{c}=\frac{D_{c}}{\binom{N}{2}}$, we have that

$$
2 D_{c}=N(N-1) I_{c} .
$$

And we just derived that

$$
2 D_{c} \approx \frac{N^{2}}{p}(.027)-N+N^{2}(.038)
$$

Therefore,

$$
(N-1) I_{c}+1 \approx \frac{N}{p}(.027)+N(.038)
$$

Note that because $I_{c}=\frac{D_{c}}{\binom{N}{2}}$, we have that

$$
2 D_{c}=N(N-1) I_{c} .
$$

And we just derived that

$$
2 D_{c} \approx \frac{N^{2}}{p}(.027)-N+N^{2}(.038)
$$

Therefore,

$$
(N-1) I_{c}+1-N(.038) \approx \frac{N}{p}(.027)
$$

Note that because $I_{c}=\frac{D_{c}}{\binom{N}{2}}$, we have that

$$
2 D_{c}=N(N-1) I_{c} .
$$

And we just derived that

$$
2 D_{c} \approx \frac{N^{2}}{p}(.027)-N+N^{2}(.038)
$$

Therefore,

$$
p\left((N-1) I_{c}+1-N(.038)\right) \approx N(.027)
$$

Note that because $I_{c}=\frac{D_{c}}{\binom{N}{2}}$, we have that

$$
2 D_{c}=N(N-1) I_{c} .
$$

And we just derived that

$$
2 D_{c} \approx \frac{N^{2}}{p}(.027)-N+N^{2}(.038)
$$

Therefore,

$$
p \approx \frac{N(.027)}{(N-1) I_{c}+1-N(.038)}
$$

Lets see how accurate this is (it gives an approximation to the period, not the actual period) with text that contains about 21 K letters. We use the same text and vigenere cipher with period 3 through 7.
indcoin < plaintext
Index of coincidence : 0.063616
Estimate of the period : 1.052158

Lets see how accurate this is (it gives an approximation to the period, not the actual period) with text that contains about 21 K letters. We use the same text and vigenere cipher with period 3 through 7.

- indcoin < cyphertextvig3

Index of coincidence : 0.044720
Estimate of the period : 3.990527

Lets see how accurate this is (it gives an approximation to the period, not the actual period) with text that contains about 21 K letters. We use the same text and vigenere cipher with period 3 through 7.

- indcoin < cyphertextvig3

Index of coincidence : 0.044720
Estimate of the period : 3.990527

- indcoin < cyphertextvig4

Index of coincidence : 0.042903
Estimate of the period : 5.455495

Lets see how accurate this is (it gives an approximation to the period, not the actual period) with text that contains about 21 K letters. We use the same text and vigenere cipher with period 3 through 7.

- indcoin < cyphertextvig3

Index of coincidence : 0.044720
Estimate of the period : 3.990527

- indcoin < cyphertextvig4

Index of coincidence : 0.042903
Estimate of the period : 5.455495

- indcoin < cyphertextvig5

Index of coincidence : 0.042236
Estimate of the period : 6.304608

Lets see how accurate this is (it gives an approximation to the period, not the actual period) with text that contains about 21 K letters. We use the same text and vigenere cipher with period 3 through 7.

- indcoin < cyphertextvig3

Index of coincidence : 0.044720
Estimate of the period : 3.990527

- indcoin < cyphertextvig4

Index of coincidence : 0.042903
Estimate of the period : 5.455495

- indcoin < cyphertextvig5

Index of coincidence : 0.042236
Estimate of the period: 6.304608

- indcoin < cyphertextvig6

Index of coincidence : 0.041899
Estimate of the period : 6.842702

Lets see how accurate this is (it gives an approximation to the period, not the actual period) with text that contains about 21 K letters. We use the same text and vigenere cipher with period 3 through 7.

- indcoin < cyphertextvig3

Index of coincidence : 0.044720
Estimate of the period : 3.990527

- indcoin < cyphertextvig4

Index of coincidence : 0.042903
Estimate of the period : 5.455495

- indcoin < cyphertextvig5

Index of coincidence : 0.042236
Estimate of the period: 6.304608

- indcoin < cyphertextvig6

Index of coincidence : 0.041899
Estimate of the period : 6.842702

- indcoin < cyphertextvig7

Index of coincidence : 0.041434
Estimate of the period : 7.757924

Lets do another experiment with less letters (precisely 3183 letters).
indcoin < plaintext
Index of coincidence : 0.069377
Estimate of the period : 0.852563

Lets do another experiment with less letters (precisely 3183 letters).

- indcoin < cyphertextvig3 Index of coincidence : 0.045386 Estimate of the period : 3.512710

Lets do another experiment with less letters (precisely 3183 letters).

- indcoin < cyphertextvig3

Index of coincidence : 0.045386
Estimate of the period : 3.512710

- indcoin < cyphertextvig4

Index of coincidence : 0.045457
Estimate of the period : 3.480884

Lets do another experiment with less letters (precisely 3183 letters).

- indcoin < cyphertextvig3 Index of coincidence : 0.045386 Estimate of the period : 3.512710
- indcoin < cyphertextvig4 Index of coincidence : 0.045457
Estimate of the period : 3.480884
- indcoin < cyphertextvig5

Index of coincidence : 0.045034
Estimate of the period : 3.681678

Lets do another experiment with less letters (precisely 3183 letters).

- indcoin < cyphertextvig3 Index of coincidence : 0.045386 Estimate of the period : 3.512710
- indcoin < cyphertextvig4

Index of coincidence : 0.045457
Estimate of the period : 3.480884

- indcoin < cyphertextvig5

Index of coincidence : 0.045034
Estimate of the period: 3.681678

- indcoin < cyphertextvig6

Index of coincidence : 0.043903
Estimate of the period : 4.352677

Lets do another experiment with less letters (precisely 3183 letters).

- indcoin < cyphertextvig3 Index of coincidence : 0.045386
Estimate of the period : 3.512710
- indcoin < cyphertextvig4

Index of coincidence : 0.045457
Estimate of the period : 3.480884

- indcoin < cyphertextvig5

Index of coincidence : 0.045034
Estimate of the period : 3.681678

- indcoin < cyphertextvig6

Index of coincidence : 0.043903
Estimate of the period : 4.352677

- indcoin < cyphertextvig7

Index of coincidence : 0.043281
Estimate of the period : 4.836937

Lets do another experiment with less letters (precisely 14590 letters).
indcoin < plaintext
Index of coincidence : 0.064586
Estimate of the period : 1.013137

Lets do another experiment with less letters (precisely 14590 letters).

- indcoin < cyphertextvig3

Index of coincidence : 0.045976
Estimate of the period : 3.357689

Lets do another experiment with less letters (precisely 14590 letters).

- indcoin < cyphertextvig3 Index of coincidence : 0.045976 Estimate of the period : 3.357689
- indcoin < cyphertextvig4 Index of coincidence : 0.042790
Estimate of the period : 5.560689

Lets do another experiment with less letters (precisely 14590 letters).

- indcoin < cyphertextvig3 Index of coincidence : 0.045976 Estimate of the period: 3.357689
- indcoin < cyphertextvig4 Index of coincidence : 0.042790
Estimate of the period : 5.560689
- indcoin < cyphertextvig5

Index of coincidence : 0.041953
Estimate of the period : 6.718174

Lets do another experiment with less letters (precisely 14590 letters).

- indcoin < cyphertextvig3 Index of coincidence : 0.045976 Estimate of the period: 3.357689
- indcoin < cyphertextvig4

Index of coincidence : 0.042790
Estimate of the period : 5.560689

- indcoin < cyphertextvig5

Index of coincidence : 0.041953
Estimate of the period : 6.718174

- indcoin < cyphertextvig6

Index of coincidence : 0.041019
Estimate of the period : 8.752510

Lets do another experiment with less letters (precisely 14590 letters).

- indcoin < cyphertextvig3 Index of coincidence : 0.045976 Estimate of the period : 3.357689
- indcoin < cyphertextvig4

Index of coincidence : 0.042790
Estimate of the period : 5.560689

- indcoin < cyphertextvig5

Index of coincidence : 0.041953
Estimate of the period : 6.718174

- indcoin < cyphertextvig6

Index of coincidence : 0.041019
Estimate of the period : 8.752510

- indcoin < cyphertextvig7

Index of coincidence : 0.040397
Estimate of the period : 10.963194

