## Primitive Roots

Definition: Given a prime $p$, an integer $a$ is said to be a primitive root $\bmod p$ if the numbers

$$
a^{1}, a^{2}, a^{3}, \ldots, a^{p-1}
$$

are all distinct $\bmod p$.

Example 1: 2 is a primitive root mod 11.

$$
\begin{array}{c|cccccccccc}
k & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 2^{k} & 2 & 4 & 8 & 5 & 10 & 9 & 7 & 3 & 6 & 1
\end{array}
$$

Example 2: 3 is not a primitive root mod 11 .

$$
\begin{array}{c|cccccccccc}
k & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 3^{k} & 3 & 9 & 5 & 4 & 1 & 3 & 9 & 5 & 4 & 1
\end{array}
$$

## Solving Congruences

| $k$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2^{k}$ | 2 | 4 | 8 | 5 | 10 | 9 | 7 | 3 | 6 | 1 |

Example 1: Solve $9 x=5 \bmod 11$.
Letting $x=2^{y}$, we have

$$
2^{6+y}=2^{6} 2^{y}=9 x=5=2^{4} \bmod 11
$$

and

$$
6+y=4 \bmod \varphi(11) .
$$

Therefore

$$
y=8 \Rightarrow x=2^{8}=3 .
$$

Example 2: Solve $7^{x}=5 \bmod 11$.
Since 2 is a primitive root, we have

$$
2^{7 x}=\left(2^{7}\right)^{x}=7^{x}=5=2^{4} \bmod 11
$$

Therefore

$$
7 x=4 \bmod \varphi(11) \Rightarrow x=2
$$

## Diffie-Hellman Public Key Exchange

1. People $P_{1}, P_{2}, \ldots P_{k}$ agree on a modulus $p$ in which they agree to do their calculations.
2. They also agree on a common base, $a$, which must be a primitive root of $p$
3. Each person $P_{i}$ secretly selects a number, $S_{i}$, from 1 to $p-1$ and publicly announces the value $\beta_{i}=a^{S_{i}} \bmod p$.

## Obtaining A Common Key

If $P_{i}$ and $P_{j}$ wish to communicte secretly, they create a common secret key, $K_{i, j}$, using the following method:
a) $P_{i}$ takes $P_{j}$ 's public number $\beta_{j}$ and raises to his secret number $S_{i}$.

$$
\beta_{j}^{S_{i}}=a^{S_{j} \times S_{i}} \bmod p
$$

b) $P_{j}$ takes $P_{i}$ 's public number $\beta_{i}$ and raises to his secret number $S_{j}$.

$$
\beta_{i}^{S_{j}}=a^{S_{i} \times S_{j}} \bmod p
$$

Now $P_{i}$ and $P_{j}$ both have the number

$$
K_{i, j}=a^{S_{i} \times S_{j}} \quad \bmod p
$$

known to nobody else and neither person has given away their private key.

## Public Key Exchange: An Example

Powers of 2 mod 37

| $s$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2^{s}$ | 2 | 4 | 8 | 16 | 32 | 27 | 17 | 34 | 31 | 25 | 13 | 26 | 15 | 30 | 23 | 9 | 18 | 36 |


| $s$ | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $2^{s}$ | 35 | 33 | 29 | 21 | 5 | 10 | 20 | 3 | 6 | 12 | 24 | 11 | 22 | 7 | 14 | 28 | 19 | 1 |

Powers of $17 \bmod 37$

| $s$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $17^{s}$ | 17 | 30 | 29 | 12 | 19 | 27 | 15 | 33 | 6 | 28 | 32 | 26 | 35 | 3 | 14 | 16 | 13 | 36 |
| $s$ | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
| $17^{s}$ | 20 | 7 | 8 | 25 | 18 | 10 | 22 | 4 | 31 | 9 | 5 | 11 | 2 | 34 | 23 | 21 | 24 | 1 |

Say that Alice and Bob wish to communicate after agreeing on on a public modulus 37 and a primitive root 17. Alice also chooses a secret key 9 and so she sends $17^{9} \equiv 6(\bmod 37)$ to Bob. At the same time Bob chooses 10 as his secret key and so he sends $17^{10} \equiv 28(\bmod 37)$ to Alice. Alice and Bob do not know each others secret keys but they *do* know $17^{\text {Secret key }}(\bmod 37)$.

The common key to Alice and Bob is

$$
6^{10}=17^{9 \times 10}=28^{9} \bmod 37
$$

## ElGamal Public Key System

To send a message $X$ to Bob using his public key $\beta$, Alice chooses at random a secret number $S_{A}$ in the interval $\{1, \ldots, p-1\}$, and sends the pair

$$
(Y, Z)
$$

where

$$
Y:=a^{S_{A}} \bmod p, \quad \text { and } \quad Z:=X \beta^{S_{A}} \bmod p
$$

Bob can then get $X$ back using his secret exponent $S_{B}$ :

$$
X \equiv Z\left(Y^{S_{B}}\right)^{-1} \bmod p
$$

In this, we can consider that $Y$ is used to "encode" $S_{A}$.

## Discrete Log Problem

The security of a Public Key Exchange rests in the difficulty of what's known as the Discrete Logarithm Problem.

$$
y=\log _{a} x \bmod p \Leftrightarrow a^{y}=x \bmod p
$$

Problem: Given $x$, find $y=\log _{a} x \bmod p$.

This is simple given a table of powers for a primitive root $\bmod p$. However, when $p$ is large, say 150 digits, this method becomes unreasonable.

The Discrete Logarithm Problem is to Public Key Exchange as Factoring is to RSA

