Primitive Roots

Definition: Given a prime p, an integer a is said to be a *primitive* root mod p if the numbers

$$a^1, a^2, a^3, \dots, a^{p-1}$$

are all distinct mod p.

Example 1: 2 is a primitive root mod 11.

k	1	2	3	4	5	6	7	8	9	10
2^k	2	4	8	5	10	9	7	3	6	1

Example 2: 3 is *not* a primitive root mod 11.

k	1	2	3	4	5	6	7	8	9	10
3^k	3	9	5	4	1	3	9	5	4	1

Solving Congruences

k	1	2	3	4	5	6	7	8	9	10
2^k	2	4	8	5	10	9	7	3	6	1

Example 1: Solve $9x = 5 \mod 11$. Letting $x = 2^y$, we have

$$2^{6+y} = 2^6 2^y = 9x = 5 = 2^4 \mod 11$$

and

$$6+y=4 \mod \varphi(11).$$

Therefore

$$y = 8 \Rightarrow x = 2^8 = 3.$$

Example 2: Solve $7^x = 5 \mod 11$. Since 2 is a primitive root, we have

$$2^{7x} = (2^7)^x = 7^x = 5 = 2^4 \mod 11$$

Therefore

$$7x = 4 \mod \varphi(11) \implies x = 2.$$

Diffie-Hellman Public Key Exchange

- 1. People $P_1, P_2, \ldots P_k$ agree on a modulus p in which they agree to do their calculations.
- 2. They also agree on a common base, a, which must be a primitive root of p
- 3. Each person P_i secretly selects a number, S_i , from 1 to p-1 and publicly announces the value $\beta_i = a^{S_i} \mod p$.

Obtaining A Common Key

If P_i and P_j wish to communic secretly, they create a common secret key, $K_{i,j}$, using the following method:

a) P_i takes P_j 's public number β_j and raises to his secret number S_i .

$$\beta_j^{S_i} = a^{S_j \times S_i} \mod p$$

b) P_j takes P_i 's public number β_i and raises to his secret number S_j . $\beta_i^{S_j} = a^{S_i \times S_j} \mod p$

Now P_i and P_j both have the number

$$K_{i,j} = a^{S_i \times S_j} \mod p,$$

known to nobody else and neither person has given away their private key.

Public Key Exchange: An Example

Powe	Powers of 2 mod 37																	
s	1	2	3 4	1 5	6 6	5 7	· 8	3 9) 1	.0 1	1 1	12	13	14	15	16 1	l7 1	8
2^s	3 2	4	8 1	6 32	2 2'	7 1	7 3	4 3	1 2	25 1	3 2	26	15	30	23	9 1	18 3	86
s	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
2^s	35	33	29	21	5	10	20	3	6	12	24	11	22	7	14	28	19	1
Powers of 17 mod 37																		
S	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
17^{s}	17	30	29	12	19	27	15	33	6	28	32	26	35	3	14	16	13	36
s	19	20	21	22	23	24	25	26	27	28	29	30	31	32	2 33	34	35	36
17^{s}	00	7	0	05	10	10	00	4	01	0	۲	11	0	0.4	1 00	01	0.4	1

Say that *Alice* and *Bob* wish to communicate after agreeing on on a public modulus 37 and a primitive root 17. *Alice* also chooses a secret key 9 and so she sends $17^9 \equiv 6 \pmod{37}$ to *Bob*. At the same time *Bob* chooses 10 as his secret key and so he sends $17^{10} \equiv 28 \pmod{37}$ to *Alice*. *Alice* and *Bob* do not know each others secret keys but they *do* know $17^{\text{secret key}} \pmod{37}$.

The common key to Alice and Bob is

 $6^{10} = 17^{9 \times 10} = 28^9 \mod 37$

ElGamal Public Key System

To send a message X to **Bob** using his public key β , **Alice** chooses at random a secret number S_A in the interval $\{1, \ldots, p-1\}$, and sends the pair

(Y, Z)

where

 $Y := a^{S_A} \mod p$, and $Z := X \beta^{S_A} \mod p$

Bob can then get X back using his secret exponent S_B :

$$X \equiv Z \left(Y^{S_B} \right)^{-1} \mod p.$$

In this, we can consider that Y is used to "encode" S_A .

Discrete Log Problem

The security of a Public Key Exchange rests in the difficulty of what's known as the Discrete Logarithm Problem.

 $y = \log_a x \mod p \iff a^y = x \mod p$

Problem: Given x, find $y = \log_a x \mod p$.

This is simple given a table of powers for a primitive root mod p. However, when p is large, say 150 digits, this method becomes unreasonable.

> The Discrete Logarithm Problem is to Public Key Exchange as Factoring is to RSA