The Entropy of An Event

Definition: The entropy of an event A is:

1. the measure of uncertainty we feel about the occurrence of A.
2. the amount of information, measured in bits, contained by A.

Events that occur with equal probability have the same amount of uncertainty and contain the same amount of information

The entropy of an event should be a function of the probability of that event occurring

The entropy of event $A=h(P(A))$

What properties should the entropy function, h, have to numerically express the measure of our uncertainty about the occurrence of an event in a manner which is compatible with our intuitive notion of uncertainty?

Basic Requirements

1. The more probable the event the smaller the uncertainty

$h(x)$ should be a decreasing function

2. The uncertainty about the simultaneous occurrence of two independent events is equal to the sum of the individual uncertainties

$$
h(x y)=h(x)+h(y)
$$

3. Small changes in the probability should correspond to small changes in the uncertainty

$$
h(x) \text { should be a continuous function }
$$

4. Recording the outcome of a $50 / 50$ situation requires one binary register.

$$
h(1 / 2)=1 \text { (bit) }
$$

Therefore

$$
h(x)=\log _{2} 1 / x
$$

Some identities with log

$$
\begin{gathered}
\log _{b}(1)=0 \\
\log _{b}(0)=-\infty \quad(\text { or undefined }) \\
\log _{b}(b)=1 \\
\log _{b}\left(b^{a}\right)=a \\
b^{\log _{b}(a)}=a \\
\log _{2}(a)=\frac{\log _{b}(a)}{\log _{b}(2)} \\
\log (1 / a)=-\log (a) \\
\log (a b)=\log a+\log b \\
\log (a / b)=\log a-\log b \\
\log \left(a^{b}\right)=b \log a
\end{gathered}
$$

Graph of $y=\log _{2}(x)$

Definitions

Basic Identities and Inequalities

1. For any two random variables X and Y

$$
H(X, Y)=H(X)+H(Y \mid X)=H(Y)+H(X \mid Y)
$$

2. For a random variable X which takes k distinct values

$$
H(X) \leq \log _{2} k
$$

3. For a partition $A=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$

$$
H(A) \leq \log _{2} k
$$

4. For any two random variables X and Y

$$
\left.\begin{array}{c}
H(X \mid Y) \leq H(X) \\
H(X, Y) \leq H(X)+H(Y)
\end{array}\right\} \begin{gathered}
\text { equality if and o } \\
\text { are independent }
\end{gathered}
$$

$$
H(X \mid Y)=0 \Leftrightarrow X \text { is a function of } Y
$$

ФЯ̛̀

$$
\begin{aligned}
& \text { Theorem } 1 H(X, Y)=H(X)+H(Y \mid X)=H(Y)+H(X \mid Y) \\
& \text { Proof. Notice } \\
& \qquad P[X=a, Y=b]=P[X=a] \times \frac{P[X=a, Y=b]}{P[X=a]}=P[X= \\
& \text { we may rewrite the definition of } H(X, Y) \text { as } \\
& \qquad H(X, Y)=\sum_{a} \sum_{b} P[X=a, Y=b] \log _{2} \frac{1}{P[X=a, Y=b]} \\
& =\sum_{a} \sum_{b} P[X=a, Y=b] \log _{2} \frac{1}{P[X=a] P[Y=b \mid X=a]} \\
& =\sum_{a} \sum_{b} P[X=a, Y=b] \log _{2} \frac{1}{P[X=a]}+\sum_{a} \sum_{b} P[X=a, \\
& = \\
& \sum_{a} P[X=a] \log _{2} \frac{1}{P[X=a]}+\sum_{a} \sum_{b} P[X=a] P[Y=b \mid X \\
& =H(X)+\sum_{a} P[X=a] \sum_{b} P[Y=b \mid X=a] \log _{2} \frac{1}{P[Y=b \mid X} \\
& =H(X)+H(Y \mid X)
\end{aligned}
$$

$$
(X) H>(X \mid X) H
$$

$$
\text { Theorem } 2 \text { For any two random variables } X \text { and } Y \text { we always have }
$$

$$
\xrightarrow{\stackrel{\rightharpoonup}{\bullet}}
$$

convex function inequality

$$
\begin{gathered}
\\
=M \\
=\frac{y}{\lambda} \\
\frac{\theta}{\lambda} \\
\| \\
\| \\
\|
\end{gathered}
$$

$$
\begin{aligned}
& P[Y=b \mid X=a] \log _{2} \\
& { }_{2} \frac{1}{P[X=a]}=H(X) .
\end{aligned}
$$

$$
\frac{\left[q=\left.X\right|^{p}=X\right]_{d}}{I}
$$

$$
\begin{aligned}
& { }^{8} \mathrm{BoI}[p \\
& \overbrace{[}
\end{aligned}
$$

$$
\begin{gathered}
(X \mid X)_{H}
\end{gathered}
$$

$$
\text { Since for a given } a \text {, the conditional probabilities } P[Y=b \mid X=a] \text { add up to } 1 \text {, we can use the }
$$

$$
\text { For appropriate choices of } m_{b} \text { and } x_{b} \text { we have: }
$$

$$
\begin{aligned}
\sum_{b} P[Y=b \mid X=a] \log _{2} \frac{1}{P[X=a \mid Y=b]} & \leq \log _{2}\left(\sum_{b} P[Y=b \mid X=a] \frac{1}{P[X=a \mid Y=b]}\right) \\
& =\log _{2}\left(\sum_{b} \frac{P[X=a, Y=b]}{P[X=a]} \times \frac{P[Y=b]}{P[X=a, Y=b]}\right) \\
& =\log _{2}\left(\sum_{b} \frac{P[Y=b]}{P[X=a]}\right) \\
& =\log _{2} \frac{1}{P[X=a]}
\end{aligned}
$$

H

$$
\text { s } \partial M \zeta
$$

I Z U
шәәоәч.

$$
=(x
$$

әм әои! 'pә.i!̣әр se
$X) H$

with equality holding if and only if X and Y are independent
Theorem 3 For any two random variables X and Y we have

$$
H(X, Y) \leq H(X)+H(Y)
$$

with equality only if all the $P[X=b]$ are equal.

"

$=$
$\log _{2} k$.

Using
Proof. The definition gives

Proof. The definition gives
with equality if and only if X takes all its values with equal probability
Theorem 4 For a random variable X which takes only k values we always have

