The Entropy of An Event

Definition: The entropy of an event A is:

- 1. the measure of uncertainty we *feel* about the occurrence of A.
- 2. the amount of *information*, measured in bits, contained by A.

Events that occur with equal probability have the same amount of uncertainty and contain the same amount of information

 \Downarrow

The entropy of an event should be a function of the probability of that event occurring

The entropy of event A = h(P(A))

What properties should the entropy function, h, have to numerically express the measure of our uncertainty about the occurrence of an event in a manner which is compatible with our intuitive notion of uncertainty?

Basic Requirements

1. The more probable the event the smaller the uncertainty

h(x) should be a decreasing function

2. The uncertainty about the simultaneous occurrence of two independent events is equal to the sum of the individual uncertainties

$$h(xy) = h(x) + h(y)$$

3. Small changes in the probability should correspond to small changes in the uncertainty

h(x) should be a continuous function

4. Recording the outcome of a 50/50 situation requires one binary register.

$$h(1/2) = 1$$
 (bit)

Therefore

$$h(x) = \log_2 1/x$$

Some identities with \log

$$\log_{b}(1) = 0$$

$$\log_{b}(0) = -\infty \quad \text{(or undefined)}$$

$$\log_{b}(b) = 1$$

$$\log_{b}(b^{a}) = a$$

$$b^{\log_{b}(a)} = a$$

$$\log_{2}(a) = \frac{\log_{b}(a)}{\log_{b}(2)}$$

$$\log(1/a) = -\log(a)$$

$$\log(ab) = \log a + \log b$$

$$\log(a/b) = \log a - \log b$$

$$\log(a^{b}) = b \log a$$

Graph of $y = \log_2(x)$

Information Theory Definitions

Definition: The Entropy of a random variable X

$$H(X) = \sum_{a} P[X = a] \log_2\left(\frac{1}{P[X = a]}\right)$$

Definition: The entropy of two random variables X and Y.

$$H(X,Y) = \sum_{a,b} P[X = a \& Y = b] \log_2\left(\frac{1}{P[X = a \& Y = b]}\right)$$

Information Theory Definitions

an event E**Definition:** The conditional entropy of a random variable X given

$$H(X \mid E) = \sum_{a} P[X = a \mid E] \log_2\left(\frac{1}{P[X = a \mid E]}\right)$$

Definition: The conditional entropy of X given Y

$$H(X \mid Y) = \sum_{b} P[Y = b] \quad H(X \mid Y = b)$$

- (b) Calculate the expected number of binary registers needed to store Z.
- (c) Calculate the uncertainty of Z given that X = 0.
- (d) Calculate H[X|Y, Z].
- (e) Calculate H[Z|Y].

Basic Identities and Inequalities

1. For any two random variables X and Y

$$H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y)$$

2. For a random variable X which takes k distinct values

 $H(X) \le \log_2 k$

3. For a partition $A = \{A_1, A_2, ..., A_k\}$

 $H(A) \le \log_2 k$

4. For any two random variables X and Y

 $H(X|Y) \le H(X)$ $H(X,Y) \le H(X) + H(Y)$

equality if and only if X and Y are independent

 $H(X|Y) = 0 \Leftrightarrow X$ is a function of Y

$$\begin{aligned} \text{Theorem 1 } H(X,Y) &= H(X) + H(Y|X) = H(Y) + H(X|Y) \\ \text{Proof. Notice} \\ P[X = a, Y = b] &= P[X = a] \times \frac{P[X = a, Y = b]}{P[X = a]} = P[X = a] \times P[Y = b|X = a] \\ \text{we may rewrite the definition of } H(X,Y) \text{ as} \\ H(X,Y) &= \sum_{a} \sum_{b} P[X = a, Y = b] \log_2 \frac{1}{P[X = a]P[Y = b|X = a]} \\ &= \sum_{a} \sum_{b} P[X = a, Y = b] \log_2 \frac{1}{P[X = a]} + \sum_{a} \sum_{b} P[X = a, Y = b] \log_2 \frac{1}{P[Y = b|X = a]} \\ &= \sum_{a} P[X = a] \log_2 \frac{1}{P[X = a]} + \sum_{a} \sum_{b} P[X = a] \log_2 \frac{1}{P[Y = b|X = a]} \\ &= H(X) + \sum_{a} P[X = a] \sum_{b} P[Y = b|X = a] \log_2 \frac{1}{P[Y = b|X = a]} \\ &= H(X) + H(Y|X) \end{aligned}$$

Theorem 2 For any two random variables X and Y we always have	
$H(X Y) \leq H(X)$	(1)
and equality holds if and only if X and Y are independent.	
Proof. From our definitions we get	
$H(X Y) = \sum_{b} P[Y = b]H(X Y = b)$	
$= \sum_{b}^{a} P[Y=b] \sum_{a} P[X=a Y=b] \log_2 \frac{1}{P[X=a Y=b]}$	
$= \sum_{b} P[Y=b] \sum_{a} \frac{P[X=a, Y=b]}{P[Y=b]} \log_2 \frac{1}{P[X=a Y=b]}$	
$= \sum_{b} \sum_{a} P[X = a, Y = b] \log_2 \frac{1}{P[X = a Y = b]}$	
$= \sum_{a} P[X = a] \sum_{b} P[Y = b X = a] \log_2 \frac{1}{P[X = a Y = b]}$	(2)
	2

Since for a given *a*, the conditional probabilities
$$P[Y = b|X = a]$$
 add up to 1, we can use the convex function inequality

$$\sum_{b} Tm_b \log_2 x_b \leq \log_2 \left(\sum_{b} m_b x_b\right)$$
For appropriate choices of m_b and x_b we have:

$$\sum_{b} P[Y = b|X = a] \log_2 \frac{1}{P[X = a] V = b]} \leq \log_2 \left(\sum_{b} P[Y = b|X = a] \frac{1}{P[X = a]Y = b]}\right)$$

$$= \log_2 \left(\sum_{b} \frac{P[X = a, Y = b]}{P[X = a]} \times \frac{P[Y = b]}{P[X = a]}\right)$$

$$= \log_2 \left(\sum_{b} \frac{P[Y = b]}{P[X = a]} \times \frac{P[Y = b]}{P[X = a]}\right)$$
Therefore

$$H(X|Y) = \sum_{a} P[X = a] \sum_{b} P[Y = b|X = a] \log_2 \frac{1}{P[X = a]} = H(X).$$

Proof. Combining the equality given by Theorem 1 with the inequality of Theorem 2 we $H(X, Y) = H(X) + H(Y X) \leq H(X) + H(Y)$, as desired. Since we have used Theorem 2 we see that equality can only hold true if X and independent.	Theorem 3 For any two random variables X and Y we have $H(X,Y) \leq H(X) + H(Y)$ with equality holding if and only if X and Y are independent	
---	---	--

Theorem 4 For a random variable X which takes only k values we always have

$$H(X) \leq \log_2 k$$
with equality if and only if X takes all its values with equal probability
Proof. The definition gives

$$H(X) = \sum_{b \in VALUES} P[X = b] \log_2 \frac{1}{P[X = b]}$$
Using again the convex function inequality

$$\sum_b m_b \log_2 \left(\sum_{b} m_b x_b \leq \log_2 \left(\sum_{b} m_b x_b\right)\right)$$
gives

$$H(X) \leq \log_2 \left(\sum_{b \in VALUES} P[X = b] \frac{1}{P[X = b]} = \log_2 \left(\sum_{b \in VALUES} 1\right) = \log_2 k.$$
with equality only if all the $P[X = b]$ are equal.
QED

СЛ