Quadratic Residues

Theorem 1 For a prime p the equation

$$
P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}=0(\bmod p)
$$

has at most n solutions.

Note that an equation may have no solution at all

$$
\begin{gathered}
x^{2}=2 \bmod 5 \\
1^{1} \equiv 1,2^{2} \equiv 4,3^{2} \equiv 4,4^{2} \equiv 1
\end{gathered}
$$

Definition: We say that a is a quadratic residue $\bmod p$ if

$$
x^{2}-a=0 \bmod p
$$

has a solution x.

Quadratic Residues

Denote the set of quadratic residues by the symbol

$$
Q R[p]=\left\{x^{2} \bmod p \mid x \in\{1,2, \ldots p-1\}\right\}
$$

Example

1. $p=11$

\[

\]

2. $p=13$

$$
\begin{array}{c|cccccccccccc}
x & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline x^{2} & 1 & 4 & 9 & 3 & 12 & 10 & 10 & 12 & 3 & 9 & 4 & 1 \\
& & Q R[13]= & \{1,4,9,3,12,10\} .
\end{array}
$$

Theorem 2 Precisely $1 / 2$ of the integers in $\{1,2, \ldots, p-1\}$ are quadratic residues $\bmod p$.

Proof.
Clearly,

$$
Q R[p]=\left\{1^{2}, 2^{2}, 3^{2}, \ldots,(p-1)^{2}\right\}
$$

Notice that

$$
(p-i)^{2}=p^{2}-2 p i+i^{2}=i^{2} \quad(\bmod p)
$$

Therefore

$$
Q R[p]=\left\{1^{2}, 2^{2}, 3^{2}, \ldots,((p-1) / 2)^{2}\right\}
$$

These numbers are all distinct $\bmod p$ since

$$
i^{2}-j^{2}=(i-j)(i+j)
$$

gives that we cannot have $i^{2}=j^{2} \bmod p$ without p dividing one of the two numbers $i-j$ or $i+j$. However, if both i and j are no larger than $(p-1) / 2, p$ cannot divide $i+j$. Thus $i^{2}=j^{2}$ forces $i=j$ in this case.

Theorem 3 For any prime $p>2$ and any integer a not equal to $0(\bmod p)$ we have

$$
a^{(p-1) / 2}= \begin{cases}1 & \text { if } a \in Q R[p] \\ -1 & \text { if } a \notin Q R[p]\end{cases}
$$

Proof.

If $a=x^{2}$ with $x \neq 0 \bmod p$ then Fermat's theorem gives

$$
a^{(p-1) / 2}=x^{p-1}=1(\bmod p)
$$

Thus the first part of our assertion holds true. To prove the second part, note that the equation

$$
x^{p-1}-1=0(\bmod p)
$$

has exactly $p-1$ solutions in $\{1,2, \ldots, p-1\}$ and for $p>2$ we have the factorization

$$
x^{p-1}-1=\left(x^{(p-1) / 2}-1\right)\left(x^{(p-1) / 2}+1\right) .
$$

All $(p-1) / 2$ elements of $Q R[p]$ satisfy the first factor. Therefore the other $(p-1) / 2$ solutions must satisfy

$$
x^{(p-1) / 2}+1=0 .
$$

Legendre Symbol

For a prime p

$$
\left(\frac{a}{p}\right)= \begin{cases}1 & \text { if } a \in Q R[p] \\ -1 & \text { if } a \notin Q R[p] \\ 0 & \text { if } \operatorname{gcd}(a, p)>1\end{cases}
$$

Then for a relatively prime to p, we have

$$
\left(\frac{a}{p}\right)=a^{(p-1) / 2} \bmod p
$$

Hence

$$
\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)
$$

Theorem 4 (Quadratic Reciprocity) For any two primes p and q we have

$$
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{(p-1)(q-1) / 4}
$$

Jacobi Symbol

We start with the Legendre symbol

$$
\left(\frac{a}{p}\right)= \begin{cases}1 & \text { if } a \in Q R[p] \\ -1 & \text { if } a \notin Q R[p]\end{cases}
$$

and for

$$
n=p_{1} p_{2} \cdots p_{k}
$$

we set

$$
J(a, n)=\left(\frac{a}{p_{1}}\right)\left(\frac{a}{p_{2}}\right) \cdots\left(\frac{a}{p_{k}}\right)
$$

However, for n odd, we have

$$
J(a, n)= \begin{cases}1 & \text { if } a=1 \\ J(a / 2, n)(-1)^{\left(n^{2}-1\right) / 8} & \text { if } a \text { is even } \\ J(n \bmod a, a)(-1)^{(n-1)(a-1) / 4} & \text { if } a>1 \text { and odd }\end{cases}
$$

Primality Testing

The Jacobi symbol allows us to test for primality of n without carrying out its factorization.

If n is prime then

$$
J(a, n)=a^{(n-1) / 2} \bmod n
$$

Thus if this identity fails to hold for any value of a in $[1, n-1]$ we can certainly conclude that n is not a prime!

Theorem 5 If n is not a prime then for more than one half the integers in $\{1, \ldots, n-1\}$ one of the following two tests will fail

$$
J(a, n)=a^{(n-1) / 2} \quad \operatorname{gcd}(a, n)=1
$$

To select a prime at random in a given range, we proceed as follows.

1. We first pick an (odd) integer n at random in the given range.
2. We next pick at random a certain (previously agreed upon) number k of integers $a_{1}, a_{2}, \ldots, a_{k}$ in the interval $\{1, \ldots, n-1\}$.
3. For each number, check that

$$
\operatorname{gcd}\left(a_{i}, n\right)=1 \quad \text { and } \quad J\left(a_{i}, n\right)=a^{(n-1) / 2} \bmod n
$$

If n happened to be prime then it will pass all of these tests. On the other hand, if n is not a prime, it will pass all of these tests with probability less than $(1 / 2)^{k}$.

