Breaking RSA

The public side of RSA consists of an encrypting exponent, e, and a modulus, m. The ciphertext, C, is found from the message by the formula

$$
C=M^{e} \bmod m
$$

It is decrypted by a secret exponent d, where

$$
e d=1 \bmod \phi(m)
$$

Then

$$
M=C^{d} \bmod m
$$

If we can manage to factor m, then computing $\phi(m)$ and d becomes routine.

The security of RSA depends on the fact that it is difficult to factor large numbers. When RSA was introduced in 1977, it was recommended that p and q be on the order of 80 digits each. By 1987 it was recommended that they be 200 digits each. Presently, 400 digit numbers should be used!

How can we factor m ?

Check the primes between 2 and \sqrt{m} to see if any divide m

For small m, this is the easiest and most efficient way of factoring an integer. On average it will take about $\sqrt{m} / 2$ calculations to factor m.

Unfortunately, this becomes very inefficient for large m. Is there a better way?

Quadratic Sieve Factoring Algorithm

1. Pick random $a \in\{1,2, \ldots,(m-1) / 2\}$
2. If $g c d(a, m)>1$ then DONE!
3. Otherwise compute $a^{2} \bmod m$ and compare to other squares already computed. If there is another number $b \neq a$ such that

$$
a^{2} \equiv b^{2} \quad \bmod m
$$

then

$$
(a+b)(a-b)=a^{2}-b^{2} \equiv 0 \quad \bmod m
$$

This means that

$$
(a+b)(a-b)=k m
$$

for some k. Since both $a+b$ and $a-b$ are less than m, m cannot divide either one. Therefore

$$
m=g c d(m, a+b) \times \operatorname{gcd}(m, a-b)
$$

Quadratic Sieve

Example: $m=91$

a	19	1	23	18	2	24	16
a^{2}	88	1	74	51	4	30	74

$$
\begin{aligned}
91 & =\operatorname{gcd}(91,23+16) \times \operatorname{gcd}(91,23-16) \\
& =\operatorname{gcd}(91,39) \times \operatorname{gcd}(91,7) \\
& =13 \times 7
\end{aligned}
$$

Analysis of Quadratic Sieve

Claim: If $m=p q$ where $p, q>1$, then for all $a \in\{1,2, \ldots,(m-1) / 2\}$ such that $\operatorname{gcd}(a, m)=1$, there is an integer $b \in\{1,2, \ldots,(m-1) / 2\}$ such that $b \neq a$ and $b^{2} \equiv a^{2} \bmod m$.

Example: $m=21$

a	$g c d(a, m)$	$a^{2} \bmod m$	b
1	1	1	8
2	1	4	5
3	3	9	
4	1	16	10
5	1	4	2
6	3	15	
7	7	7	
8	1	1	1
9	3	18	
10	1	16	4

Remark: Exactly $1 / 2$ of the $\phi(m)$ integers that are relatively prime to m are between 1 and $(m-1) / 2$ since

$$
\operatorname{gcd}(a, m)=\operatorname{gcd}(m-a, m)
$$

Probability that a subset of $\{1,2, \ldots,(m-1) / 2\}$ $P(k)=$ of size k that there is one number, a, that has $\operatorname{gcd}(a, m)>1$ or there are two integers $a \neq b$ such that $a^{2} \equiv b^{2} \bmod m$.

Probability that a subset of size k such that $=1-$ for all $a, \operatorname{gcd}(a, m)=1$ and for all $a, b a^{2} \not \equiv b^{2}$ $\bmod m$.

$$
=1-\left(\frac{\frac{\phi(m)}{2}}{\frac{m-1}{2}} \cdot \frac{\frac{\phi(m)}{2}-2}{\frac{m-1}{2}-1} \cdot \frac{\frac{\phi(m)}{2}-4}{\frac{m-1}{2}-2} \cdots \frac{\frac{\phi(m)}{2}-2 k+2}{\frac{m-1}{2}-k+1}\right)
$$

Example: $m=6731$
$P(1)=.026 \quad P(10)=.24 \quad P(45)=.79 \quad P(90)=.98$

