
Modern Cryptography

1. The opponent knows the system being used

2. The opponent has access to any amount of corresponding
plaintext-ciphertext pairs

3. The opponent has access to the key used in the
encrypting transformation Ek(M) = C.

4. Security is to be achieved by the opponent not being able
to construct the decrypting transformation Dk(C) = M .

A map Ek is said to be a trapdoor function if the
construction of the inverse map, Dk, is of such theoretical
complexity as to make it inaccessible to our present day
computational tools.

NOTE: A trapdoor function may be so
today... but may not be so tomorrow!!
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The RSA System

1. Choose p and q primes and let m = pq

2. Message space: {1, 2, . . . ,m − 1}.

3. Key space: {e | 1 ≤ e ≤ φ(m), gcd(e, φ(m)) = 1}

4. Encrypting transformation

C = Ee(M) = M e mod m

5. Decrypting transformation

M = Dd(C) = Cd mod m

where ed ≡ 1 mod φ(m)

m, e public p, q, d private
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An RSA Example

1. Choose p and q

p = 1873 q = 131 → m = 245, 363

2. Select message

M = 2905

3. Select encrypting exponent

e = 323

4. Encrypt message

C = M e = 2905323 mod 245,363 = 13,388

5. Compute decrypting exponent

ed = 1 mod φ(m) → d = 148, 247

6. Decrypt message

Cd = 13, 388148,247 mod 245,363 = 2905
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RSA: Why it works

How do we know that

Cd = M ed = M mod m

when ed = 1 mod φ(m)?

Recall

Theorem 1 (Euler-Fermat) If a and m are relatively

prime then

aφ(m) ≡ 1 mod m.

What if M and m are not relatively prime?

Theorem 2 (Euler-Fermat for RSA) If m = pq where

p and q are primes then for all integers a and k we have

a1+kφ(m) ≡ a mod m
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Proof of Theorem 2

Assume gcd(a,m) = p.

gcd(a,m) = p ⇒ a = xp for some x

Therefore

gcd(xp, pq) = p ⇒ gcd(x, q) = 1

⇒ gcd(a, q) = 1

Euler-Fermat yields

aφ(q) ≡ 1 mod q ⇒ aq−1 = 1 + h1q

Raise both sides to the k(p − 1) for any k:

ak(p−1)(q−1) = akφ(m) = 1 + h2q

Multiply both sides by a:

a1+kφ(m) = a + ah2q = a + h2xpq ≡ a mod m
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Converting Messages into Numbers

The following is one of many possible methods for
converting text into numbers. The basic idea is to use
letters as the digits of a number written in base 26. Since
any resulting N digit number (base 26) must be less than
m, we have that

m > 26N − 1 ⇒ N = blog26 mc

m = 245, 363 ⇒ N = 3

Encrypt the message “THE”:

“T”260 + “H”261 + “E”262 = 19 + 7 · 26 + 4 · 262

= 2905

2905323 = 13, 388 mod m

= 24 + 514 · 26

= 24 + (20 + 19 · 26) · 26

= 24 + 20 · 26 + 19 · 262 + 0 · 263

= “Y”260 + “U”261 + “T”262 + “A”263

NOTE: Use N + 1 digits for the ciphertext since some values of C = M e are on the interval [26N ,m− 1].
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An Observation

If m = pq, with p and q distincts primes, then

φ(m) = (p − 1) (q − 1).

It is noteworthy that in this case, we can reconstruct the
factorization of m from the knowledge of the value φ(m).

More precisely, we have

φ(m) = (p − 1)(q − 1)

= pq − p − q + 1

= m − (p + q) + 1,

or equivalently,

m + 1 − φ(m) = p + q.

Therefore the roots of the polynomial

x2 − (m + 1 − φ(m))x + m = x2 − (p + q)x + pq

= (x − p)(x − q)

are exactly p and q.
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Another Observation

Assuming that m = pq, the following equation

x2 = 1 mod m

has exactly 4 solutions. They can be found using the
Chinese Remainder Theorem applied to each of the
following systems of equations

x = 1 mod p x = 1 mod p

x = 1 mod q x = −1 mod q

x = −1 mod p x = −1 mod p

x = 1 mod q x = −1 mod q

Clearly, two of these solutions are x = ±1, while the other
two are x = ±a for some a. If we could find a, then

a2 = 1 mod m ⇒ a2 − 1 = km

⇒ (a − 1)(a + 1) = km

⇒ m = gcd(a − 1,m) × gcd(a + 1,m)

Given d, the decrypting exponent, there is a probabilistic
method to find a.
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To find a nontrivial solution of x2 ≡ 1 mod m (with only
the knowledge of d), we proceed as follows:

1. Choose k at random between 2 and m − 2.

2. Compute x := gcd(k, n).

3. If x > 1 then x is a factor of n and it must be equal to
p or q, so we are finished. Otherwise

4. Write ed − 1 = 2sr with r odd.

5. Compute y := kr.

6. If y ≡ 1 (mod m) then try again.

7. Find the least j (0 ≤ j ≤ s) such that

y2j
≡ 1 (mod m), and set x := y2j−1

8. If x ≡ −1 (mod n) then try again,

9. Else (x + 1, n) is a factor of n and it must be equal to p

or q, so we are finished.
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Digital Signatures (Needs Improvement)

How can we be sure that when we recieve a message from
Pi, that it was actually sent by Pi?
Say Alice selects primes p1 and q1 and publishes n1 = p1q1

and e1.
Say Bob selects primes p2 and q2 and publishes n2 = p2q2

and e2.
For Bob to communicate with Alice, he takes his message
M encrypts by

M e
1modn1.

But anyone could have sent this message to Alice. How can
Bob ensure that Alice knows that he sent the message.
Instead, Bob should send the following:

(M e
1modn1)

d
2modn2.

To decrypt the message, Alice would first have to encrypt it
using Bob’s public encrypting exponent e2 then decrypt
using her own decrypting exponent d1. Since only Bob
knows his decrypting exponent, the message will wind up
being incomprehensible unless it was really Bob who sent
the message.
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Exercises

1. An individual publishes an RSA modulus of m = 350123
and an encryption exponent e = 37. Find his decrypting
exponent, given that one of the factors of m is 347.

2. Encrypt each letter of the word BANG individually using
the RSA system with m = 143 and e = 7. In translating
letters into numbers, send A to 10, B to 11, . . ., Z to 35.

3. Using the same system described in the previous
problem, find the decrypting exponent d and decode the
message 132 (a single letter).

4. Factor m = 773, 771 into the product of two primes given
that φ(m) = 771, 552.
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